Suppr超能文献

工业生物制药批处理过程监测的进展:用于小数据问题的机器学习方法。

Advances in industrial biopharmaceutical batch process monitoring: Machine-learning methods for small data problems.

机构信息

Digital Integration and Predictive Technologies, Amgen, Inc., Cambridge, Massachusetts.

Digital Integration and Predictive Technologies, Amgen, Inc., West Greenwich, Rhode Island.

出版信息

Biotechnol Bioeng. 2018 Aug;115(8):1915-1924. doi: 10.1002/bit.26605. Epub 2018 Apr 23.

Abstract

Biopharmaceutical manufacturing comprises of multiple distinct processing steps that require effective and efficient monitoring of many variables simultaneously in real-time. The state-of-the-art real-time multivariate statistical batch process monitoring (BPM) platforms have been in use in recent years to ensure comprehensive monitoring is in place as a complementary tool for continued process verification to detect weak signals. This article addresses a longstanding, industry-wide problem in BPM, referred to as the "Low-N" problem, wherein a product has a limited production history. The current best industrial practice to address the Low-N problem is to switch from a multivariate to a univariate BPM, until sufficient product history is available to build and deploy a multivariate BPM platform. Every batch run without a robust multivariate BPM platform poses risk of not detecting potential weak signals developing in the process that might have an impact on process and product performance. In this article, we propose an approach to solve the Low-N problem by generating an arbitrarily large number of in silico batches through a combination of hardware exploitation and machine-learning methods. To the best of authors' knowledge, this is the first article to provide a solution to the Low-N problem in biopharmaceutical manufacturing using machine-learning methods. Several industrial case studies from bulk drug substance manufacturing are presented to demonstrate the efficacy of the proposed approach for BPM under various Low-N scenarios.

摘要

生物制药制造包含多个不同的处理步骤,这些步骤需要实时有效地同时监测许多变量。近年来,最先进的实时多元统计批量过程监测(BPM)平台已被用于确保全面监测到位,作为持续过程验证的补充工具,以检测弱信号。本文解决了 BPM 中一个长期存在的行业范围问题,称为“低 N 问题”,即产品的生产历史有限。目前解决低 N 问题的最佳工业实践是从多元 BPM 切换到单变量 BPM,直到有足够的产品历史记录来构建和部署多元 BPM 平台。每个没有稳健多元 BPM 平台的批次运行都存在无法检测到可能对过程和产品性能产生影响的潜在弱信号的风险。在本文中,我们提出了一种通过硬件利用和机器学习方法相结合来生成任意数量的虚拟批次的方法来解决低 N 问题。据作者所知,这是第一篇使用机器学习方法解决生物制药制造中低 N 问题的文章。介绍了来自原料药制造的几个工业案例研究,以证明所提出的方法在各种低 N 情况下用于 BPM 的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验