INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
Department of Materials Science and Engineering, Saarland University, Campus D2 2, 66123, Saarbrücken, Germany.
Chemistry. 2018 Jun 7;24(32):8061-8065. doi: 10.1002/chem.201801521. Epub 2018 Apr 30.
In searching for polymer-based electrolytes with improved performance for lithium ion and lithium metal batteries, we studied block copolymer electrolytes with high amounts of bis(trifluoromethane)sulfonimide lithium obtained by macromolecular co-assembly of a poly(isoprene)-block-poly(styrene)-block-poly(ethylene oxide) and the salt from tetrahydrofuran. Particularly, an ultra-short poly(ethylene oxide) block of 2100 g mol was applied, giving rise to 2D continuous lamellar microstructures. The macroscopic stability was ensured with major blocks from poly(isoprene) and poly(styrene), which separated the ionic conductive PEO/salt lamellae. Thermal annealing led to high ionic conductivities of 1.4 mS cm at 20 °C with low activation energy and a superior lithium ion transference number of 0.7, accompanied by an improved mechanical stability (storage modulus of up to 10 Pa). With high Li:O ratios >1, we show a viable concept to achieve fast Li transport in block copolymers (BCP), decoupled from slow polymer relaxation.
在寻找具有改进性能的用于锂离子和锂金属电池的聚合物电解质时,我们研究了通过聚(异戊二烯)-嵌段-聚(苯乙烯)-嵌段-聚(氧化乙烯)和四氢呋喃中的盐的高分子共组装获得的具有高含量双(三氟甲烷)磺酰亚胺锂的嵌段共聚物电解质。特别地,应用了超短的 2100gmol 的聚(氧化乙烯)嵌段,导致形成 2D 连续层状微结构。通过聚(异戊二烯)和聚(苯乙烯)的主要嵌段来确保宏观稳定性,它们分离了离子导电的 PEO/盐层。热退火导致在 20°C 时具有 1.4mScm 的高离子电导率和低活化能,以及优异的锂离子迁移数 0.7,同时具有改善的机械稳定性(存储模量高达 10Pa)。具有高的 Li:O 比 >1,我们展示了一种可行的概念,即在嵌段共聚物(BCP)中实现快速的 Li 传输,与缓慢的聚合物弛豫解耦。