Department of Biological Sciences, University of Massachusetts-Lowell, One University Avenue, Lowell, MA 01854, USA; Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA.
Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA.
Arch Biochem Biophys. 2018 Jun 1;647:84-92. doi: 10.1016/j.abb.2018.04.002. Epub 2018 Apr 5.
Calcium regulation of cardiac muscle contraction is controlled by the thin-filament proteins troponin and tropomyosin bound to actin. In the absence of calcium, troponin-tropomyosin inhibits myosin-interactions on actin and induces muscle relaxation, whereas the addition of calcium relieves the inhibitory constraint to initiate contraction. Many mutations in thin filament proteins linked to cardiomyopathy appear to disrupt this regulatory switching. Here, we tested perturbations caused by mutant tropomyosins (E40K, DCM; and E62Q, HCM) on intra-filament interactions affecting acto-myosin interactions including those induced further by myosin association. Comparison of wild-type and mutant human α-tropomyosin (Tpm1.1) behavior was carried out using in vitro motility assays and molecular dynamics simulations. Our results show that E62Q tropomyosin destabilizes thin filament off-state function by increasing calcium-sensitivity, but without apparent affect on global tropomyosin structure by modifying coiled-coil rigidity. In contrast, the E40K mutant tropomyosin appears to stabilize the off-state, demonstrates increased tropomyosin flexibility, while also decreasing calcium-sensitivity. In addition, the E40K mutation reduces thin filament velocity at low myosin concentration while the E62Q mutant tropomyosin increases velocity. Corresponding molecular dynamics simulations indicate specific residue interactions that are likely to redefine underlying molecular regulatory mechanisms, which we propose explain the altered contractility evoked by the disease-causing mutations.
钙调节心肌收缩是由与肌动蛋白结合的细肌丝蛋白肌钙蛋白和原肌球蛋白控制的。在没有钙的情况下,肌钙蛋白-原肌球蛋白抑制肌球蛋白在肌动蛋白上的相互作用,诱导肌肉松弛,而钙的加入则解除了引发收缩的抑制约束。与心肌病相关的许多细肌丝蛋白突变似乎破坏了这种调节开关。在这里,我们测试了突变原肌球蛋白(E40K,DCM;和 E62Q,HCM)对影响肌球蛋白-肌动蛋白相互作用的细丝内相互作用的扰动,包括肌球蛋白结合进一步诱导的相互作用。使用体外运动分析和分子动力学模拟比较了野生型和突变型人α-原肌球蛋白(Tpm1.1)的行为。我们的结果表明,E62Q 原肌球蛋白通过增加钙敏感性来破坏细纤维关闭状态功能,但通过改变卷曲螺旋刚性对全局原肌球蛋白结构没有明显影响。相比之下,E40K 突变原肌球蛋白似乎稳定了关闭状态,表现出更高的原肌球蛋白灵活性,同时也降低了钙敏感性。此外,E40K 突变降低了低肌球蛋白浓度下的细丝速度,而 E62Q 突变原肌球蛋白增加了速度。相应的分子动力学模拟表明,特定的残基相互作用可能重新定义潜在的分子调节机制,我们提出这些机制解释了致病突变引起的改变的收缩性。