Suppr超能文献

肥厚型心肌病相关TPM1变体S215L的致病机制。

Mechanisms of pathogenicity in the hypertrophic cardiomyopathy-associated TPM1 variant S215L.

作者信息

Halder Saiti S, Rynkiewicz Michael J, Creso Jenette G, Sewanan Lorenzo R, Howland Lindsey, Moore Jeffrey R, Lehman William, Campbell Stuart G

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT 06511.

Department of Physiology/Biophysics, Boston University, Boston, MA 02215.

出版信息

PNAS Nexus. 2023 Jan 21;2(3):pgad011. doi: 10.1093/pnasnexus/pgad011. eCollection 2023 Mar.

Abstract

Hypertrophic cardiomyopathy (HCM) is an inherited disorder often caused by mutations to sarcomeric genes. Many different HCM-associated TPM1 mutations have been identified but they vary in their degrees of severity, prevalence, and rate of disease progression. The pathogenicity of many TPM1 variants detected in the clinical population remains unknown. Our objective was to employ a computational modeling pipeline to assess pathogenicity of one such variant of unknown significance, TPM1 S215L, and validate predictions using experimental methods. Molecular dynamic simulations of tropomyosin on actin suggest that the S215L significantly destabilizes the blocked regulatory state while increasing flexibility of the tropomyosin chain. These changes were quantitatively represented in a Markov model of thin-filament activation to infer the impacts of S215L on myofilament function. Simulations of in vitro motility and isometric twitch force predicted that the mutation would increase Ca sensitivity and twitch force while slowing twitch relaxation. In vitro motility experiments with thin filaments containing TPM1 S215L revealed higher Ca sensitivity compared with wild type. Three-dimensional genetically engineered heart tissues expressing TPM1 S215L exhibited hypercontractility, upregulation of hypertrophic gene markers, and diastolic dysfunction. These data form a mechanistic description of TPM1 S215L pathogenicity that starts with disruption of the mechanical and regulatory properties of tropomyosin, leading thereafter to hypercontractility and finally induction of a hypertrophic phenotype. These simulations and experiments support the classification of S215L as a pathogenic mutation and support the hypothesis that an inability to adequately inhibit actomyosin interactions is the mechanism whereby thin-filament mutations cause HCM.

摘要

肥厚型心肌病(HCM)是一种遗传性疾病,通常由肌节基因突变引起。已鉴定出许多不同的与HCM相关的TPM1突变,但它们在严重程度、患病率和疾病进展速率方面存在差异。在临床人群中检测到的许多TPM1变体的致病性仍然未知。我们的目标是采用一种计算建模流程来评估一种意义不明的此类变体TPM1 S215L的致病性,并使用实验方法验证预测结果。肌动蛋白上原肌球蛋白的分子动力学模拟表明,S215L显著破坏了受阻调节状态,同时增加了原肌球蛋白链的柔韧性。这些变化在细肌丝激活的马尔可夫模型中得到了定量表示,以推断S215L对肌丝功能的影响。体外运动性和等长收缩力模拟预测,该突变将增加钙敏感性和收缩力,同时减缓收缩松弛。含有TPM1 S215L的细肌丝的体外运动性实验显示,与野生型相比,钙敏感性更高。表达TPM1 S215L的三维基因工程心脏组织表现出过度收缩、肥厚基因标志物上调和舒张功能障碍。这些数据形成了对TPM1 S215L致病性的机制描述,始于原肌球蛋白的机械和调节特性的破坏,随后导致过度收缩,最终诱导肥厚表型。这些模拟和实验支持将S215L分类为致病性突变,并支持细丝突变导致HCM的机制是无法充分抑制肌动球蛋白相互作用这一假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d963/9991458/03afd0bc3012/pgad011f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验