Edwards William, Marro Nicolas, Turner Grace, Kay Euan R
EaStCHEM School of Chemistry , University of St Andrews , North Haugh, St Andrews , KY16 9ST , UK . Email:
Chem Sci. 2017 Nov 17;9(1):125-133. doi: 10.1039/c7sc03666c. eCollection 2018 Jan 7.
Surface chemical composition is fundamental to determining properties on the nanoscale, making precise control over surface chemistry critical to being able to optimise nanomaterials for virtually any application. Surface-engineering independent of the preparation of the underlying nanomaterial is particularly attractive for efficient, divergent synthetic strategies, and for the potential to create reactive, responsive and smart nanodevices. For monolayer-stabilised nanoparticles, established methods include ligand exchange to replace the ligand shell in its entirety, encapsulation with amphiphilic (macro)molecules, noncovalent interactions with surface-bound biomolecules, or a relatively limited number of covalent bond forming reactions. Yet, each of these approaches has considerable drawbacks. Here we show that dynamic covalent exchange at the periphery of the nanoparticle-stabilizing monolayer allows surface-bound ligand molecular structure to be substantially modified in mild and reversible processes that are independent of the nanoparticle-molecule interface. Simple stoichiometric variation allows the extent of exchange to be controlled, generating a range of kinetically stable mixed-monolayer compositions across an otherwise identical, self-consistent series of nanoparticles. This approach can be used to modulate nanoparticle properties that are defined by the monolayer composition. We demonstrate switching of nanoparticle solvent compatibility between widely differing solvents - spanning hexane to water - and the ability to tune solubility across the entire continuum between these extremes, all from a single nanoparticle starting point. We also demonstrate that fine control over mixed-monolayer composition influences the assembly of discrete, colloidally stable nanoparticle clusters. By carefully assessing monolayer composition in each state, using both and methods, we are able to correlate the molecular-level details of the nanoparticle-bound monolayer with system-level properties and behaviour. These empirically determined relationships contribute fundamental insights on nanoscale structure-function relationships, which are currently beyond the capabilities of prediction.
表面化学成分对于确定纳米尺度上的性质至关重要,因此对表面化学进行精确控制对于能够针对几乎任何应用优化纳米材料至关重要。独立于底层纳米材料制备的表面工程对于高效、多样化的合成策略以及创建反应性、响应性和智能纳米器件的潜力特别有吸引力。对于单层稳定的纳米颗粒,既定方法包括完全取代配体壳的配体交换、用两亲(大)分子包封、与表面结合的生物分子的非共价相互作用或相对有限数量的形成共价键的反应。然而,这些方法中的每一种都有相当大的缺点。在这里,我们表明,在纳米颗粒稳定单层的外围进行动态共价交换允许在与纳米颗粒 - 分子界面无关的温和且可逆的过程中对表面结合的配体分子结构进行实质性修饰。简单的化学计量变化允许控制交换程度,在一系列原本相同、自洽的纳米颗粒上产生一系列动力学稳定的混合单层组成。这种方法可用于调节由单层组成定义的纳米颗粒性质。我们展示了纳米颗粒在从己烷到水等广泛不同溶剂之间的溶剂兼容性切换,以及在这些极端之间的整个连续范围内调节溶解度的能力,所有这些都从单个纳米颗粒起点开始。我们还证明,对混合单层组成的精细控制会影响离散的、胶体稳定的纳米颗粒簇的组装。通过使用 和 方法仔细评估每种状态下的单层组成,我们能够将纳米颗粒结合单层的分子水平细节与系统水平的性质和行为相关联。这些通过实验确定的关系为纳米尺度结构 - 功能关系提供了基本见解,这目前超出了 预测的能力。