Wacker Irene U, Veith Lisa, Spomer Waldemar, Hofmann Andreas, Thaler Marlene, Hillmer Stefan, Gengenbach Ulrich, Schröder Rasmus R
Cryo Electron Microscopy, Centre for Advanced Materials, Universität Heidelberg; Heidelberg Karlsruhe Research Partnership (HEiKA);
Cryo Electron Microscopy, BioQuant, Universitätsklinikum Heidelberg.
J Vis Exp. 2018 Mar 20(133):57059. doi: 10.3791/57059.
Targeting specific cells at ultrastructural resolution within a mixed cell population or a tissue can be achieved by hierarchical imaging using a combination of light and electron microscopy. Samples embedded in resin are sectioned into arrays consisting of ribbons of hundreds of ultrathin sections and deposited on pieces of silicon wafer or conductively coated coverslips. Arrays are imaged at low resolution using a digital consumer like smartphone camera or light microscope (LM) for a rapid large area overview, or a wide field fluorescence microscope (fluorescence light microscopy (FLM)) after labeling with fluorophores. After post-staining with heavy metals, arrays are imaged in a scanning electron microscope (SEM). Selection of targets is possible from 3D reconstructions generated by FLM or from 3D reconstructions made from the SEM image stacks at intermediate resolution if no fluorescent markers are available. For ultrastructural analysis, selected targets are finally recorded in the SEM at high-resolution (a few nanometer image pixels). A ribbon-handling tool that can be retrofitted to any ultramicrotome is demonstrated. It helps with array production and substrate removal from the sectioning knife boat. A software platform that allows automated imaging of arrays in the SEM is discussed. Compared to other methods generating large volume EM data, such as serial block-face SEM (SBF-SEM) or focused ion beam SEM (FIB-SEM), this approach has two major advantages: (1) The resin-embedded sample is conserved, albeit in a sliced-up version. It can be stained in different ways and imaged with different resolutions. (2) As the sections can be post-stained, it is not necessary to use samples strongly block-stained with heavy metals to introduce contrast for SEM imaging or render the tissue blocks conductive. This makes the method applicable to a wide variety of materials and biological questions. Particularly prefixed materials e.g., from biopsy banks and pathology labs, can directly be embedded and reconstructed in 3D.
通过结合光学显微镜和电子显微镜的分层成像,可以在混合细胞群体或组织中以超微结构分辨率靶向特定细胞。嵌入树脂的样品被切成由数百个超薄切片带组成的阵列,并沉积在硅片或导电涂层盖玻片上。使用数字消费级设备如智能手机相机或光学显微镜(LM)对阵列进行低分辨率成像,以快速获得大面积概览,或者在用荧光团标记后使用宽场荧光显微镜(荧光光学显微镜(FLM))成像。在用重金属进行后染色后,阵列在扫描电子显微镜(SEM)中成像。如果没有荧光标记物,可以从FLM生成的三维重建中或从SEM图像堆栈以中等分辨率进行的三维重建中选择目标。对于超微结构分析,最终在SEM中以高分辨率(几纳米图像像素)记录选定的目标。展示了一种可以改装到任何超薄切片机上的切片处理工具。它有助于阵列生产以及从切片刀槽中去除底物。讨论了一个允许在SEM中对阵列进行自动成像的软件平台。与其他生成大量EM数据的方法相比,如连续块面SEM(SBF-SEM)或聚焦离子束SEM(FIB-SEM),这种方法有两个主要优点:(1)树脂包埋的样品得以保留,尽管是切成薄片的形式。它可以用不同的方式染色并以不同的分辨率成像。(2)由于切片可以进行后染色,因此无需使用用重金属强烈块染的样品来为SEM成像引入对比度或使组织块导电。这使得该方法适用于多种材料和生物学问题。特别是来自活检库和病理实验室的预固定材料,可以直接进行包埋并进行三维重建。