MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom.
Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom.
PLoS Biol. 2018 Apr 9;16(4):e2003611. doi: 10.1371/journal.pbio.2003611. eCollection 2018 Apr.
Nitric oxide (NO) regulates neuronal function and thus is critical for tuning neuronal communication. Mechanisms by which NO modulates protein function and interaction include posttranslational modifications (PTMs) such as S-nitrosylation. Importantly, cross signaling between S-nitrosylation and prenylation can have major regulatory potential. However, the exact protein targets and resulting changes in function remain elusive. Here, we interrogated the role of NO-dependent PTMs and farnesylation in synaptic transmission. We found that NO compromises synaptic function at the Drosophila neuromuscular junction (NMJ) in a cGMP-independent manner. NO suppressed release and reduced the size of available vesicle pools, which was reversed by glutathione (GSH) and occluded by genetic up-regulation of GSH-generating and de-nitrosylating glutamate-cysteine-ligase and S-nitroso-glutathione reductase activities. Enhanced nitrergic activity led to S-nitrosylation of the fusion-clamp protein complexin (cpx) and altered its membrane association and interactions with active zone (AZ) and soluble N-ethyl-maleimide-sensitive fusion protein Attachment Protein Receptor (SNARE) proteins. Furthermore, genetic and pharmacological suppression of farnesylation and a nitrosylation mimetic mutant of cpx induced identical physiological and localization phenotypes as caused by NO. Together, our data provide evidence for a novel physiological nitrergic molecular switch involving S-nitrosylation, which reversibly suppresses farnesylation and thereby enhances the net-clamping function of cpx. These data illustrate a new mechanistic signaling pathway by which regulation of farnesylation can fine-tune synaptic release.
一氧化氮(NO)调节神经元功能,因此对于调节神经元通讯至关重要。NO 调节蛋白质功能和相互作用的机制包括翻译后修饰(PTMs),如 S-亚硝基化。重要的是,S-亚硝基化和法呢基化之间的交叉信号转导具有重要的调节潜力。然而,确切的蛋白质靶标和功能变化仍然难以捉摸。在这里,我们研究了 NO 依赖性 PTMs 和法呢基化在突触传递中的作用。我们发现,NO 以 cGMP 非依赖性方式损害果蝇肌神经接点(NMJ)的突触功能。NO 抑制释放并减少可用囊泡池的大小,这可以通过谷胱甘肽(GSH)逆转,并通过遗传上调 GSH 生成和去亚硝基谷氨酸半胱氨酸连接酶和 S-亚硝基谷胱甘肽还原酶活性来阻断。增强的氮能活性导致融合夹蛋白复合物素(cpx)的 S-亚硝基化,并改变其与活性区(AZ)和可溶性 N-乙基-马来酰亚胺敏感融合蛋白附着蛋白受体(SNARE)蛋白的膜结合和相互作用。此外,法呢基化的遗传和药理学抑制以及 cpx 的硝化模拟突变体诱导的生理和定位表型与 NO 引起的表型相同。总之,我们的数据为涉及 S-亚硝基化的新型生理氮能分子开关提供了证据,该开关可逆地抑制法呢基化,从而增强 cpx 的净夹合功能。这些数据说明了一种新的机制信号通路,通过该通路可以调节法呢基化来微调突触释放。