Suppr超能文献

冲刺的动力学需求在加速阶段发生变化:整个力波形的新分析。

Kinetic demands of sprinting shift across the acceleration phase: Novel analysis of entire force waveforms.

机构信息

Department for Health, University of Bath, Bath, UK.

CAMERA - Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, UK.

出版信息

Scand J Med Sci Sports. 2018 Jul;28(7):1784-1792. doi: 10.1111/sms.13093. Epub 2018 Apr 25.

Abstract

A novel approach of analyzing complete ground reaction force waveforms rather than discrete kinetic variables can provide new insight to sprint biomechanics. This study aimed to understand how these waveforms are associated with better performance across entire sprint accelerations. Twenty-eight male track and field athletes (100-m personal best times: 10.88 to 11.96 seconds) volunteered to participate. Ground reaction forces produced across 24 steps were captured during repeated (two to five) maximal-effort sprints utilizing a 54-force-plate system. Force data (antero-posterior, vertical, resultant, and ratio of forces) across each contact were registered to 100% of stance and averaged for each athlete. Statistical parametric mapping (linear regression) revealed specific phases of stance where force was associated with average horizontal external power produced during that contact. Initially, antero-posterior force production during mid-late propulsion (eg, 58%-92% of stance for the second ground contact) was positively associated with average horizontal external power. As athletes progressed through acceleration, this positive association with performance shifted toward the earlier phases of contact (eg, 55%-80% of stance for the eighth and 19%-64% for the 19th ground contact). Consequently, as athletes approached maximum velocity, better athletes were more capable of attenuating the braking forces, especially in the latter parts of the eccentric phase. These unique findings demonstrate a shift in the performance determinants of acceleration from higher concentric propulsion to lower eccentric braking forces as velocity increases. This highlights the broad kinetic requirements of sprinting and the conceivable need for athletes to target improvements in different phases separately with demand-specific exercises.

摘要

一种分析完整地面反作用力波形而不是离散动力学变量的新方法可以为短跑生物力学提供新的见解。本研究旨在了解这些波形如何与整个短跑加速过程中的更好表现相关联。28 名男性田径运动员(100 米个人最佳时间:10.88 秒至 11.96 秒)自愿参加。在利用 54 个力板系统进行重复(两到五次)最大努力冲刺时,记录了 24 步过程中产生的地面反作用力。在每个接触点,力数据(前后向、垂直向、合成力和力比)被记录到 100%的支撑阶段,并对每个运动员进行平均处理。统计参数映射(线性回归)揭示了支撑阶段的特定阶段,在该阶段,力与该接触过程中产生的平均水平外力相关。最初,在后期推进中(例如,在第二次地面接触时,58%-92%的支撑阶段),前后向力的产生与平均水平外力呈正相关。随着运动员加速,与表现的这种正相关关系转移到接触的早期阶段(例如,在第八次接触时为 55%-80%的支撑阶段,在第 19 次接触时为 19%-64%的支撑阶段)。因此,随着运动员接近最大速度,表现更好的运动员能够更好地衰减制动力,尤其是在离心阶段的后期。这些独特的发现表明,随着速度的增加,加速的性能决定因素从更高的向心推进力转变为更低的离心制动力。这突出了短跑的广泛动力学要求,以及运动员可能需要分别针对不同阶段进行有针对性的练习来提高表现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验