Exercise and Sport Science Department, School of Environmental and Life Sciences, University of Newcastle, Ourimbah, Australia.
J Strength Cond Res. 2013 Sep;27(9):2494-503. doi: 10.1519/JSC.0b013e31827f5103.
The interaction between step kinematics and stance kinetics determines sprint velocity. However, the influence that stance kinetics has on effective acceleration in field sport athletes requires clarification. About 25 men (age = 22.4 ± 3.2 years; mass = 82.8 ± 7.2 kg; height = 1.81 ± 0.07 m) completed twelve 10-m sprints, 6 sprints each for kinematic and kinetic assessment. Pearson's correlations (p ≤ 0.05) examined relationships between 0-5, 5-10, and 0-10 m velocity; step kinematics (mean step length [SL], step frequency, contact time [CT], flight time over each interval); and stance kinetics (relative vertical, horizontal, and resultant force and impulse; resultant force angle; ratio of horizontal to resultant force [RatF] for the first, second, and last contacts within the 10-m sprint). Relationships were found between 0-5, 5-10, and 0-10 m SL and 0-5 and 0-10 m velocity (r = 0.397-0.535). CT of 0-5 and 0-10 m correlated with 5-10 m velocity (r = -0.506 and -0.477, respectively). Last contact vertical force correlated with 5-10 m velocity (r = 0.405). Relationships were established between the second and last contact vertical and resultant force and CT over all intervals (r = -0.398 to 0.569). First and second contact vertical impulse correlated with 0-5 m SL (r = 0.434 and 0.442, respectively). Subjects produced resultant force angles and RatF suitable for horizontal force production. Faster acceleration in field sport athletes involved longer steps, with shorter CT. Greater vertical force production was linked with shorter CT, illustrating efficient force production. Greater SLs during acceleration were facilitated by higher vertical impulse and appropriate horizontal force. Speed training for field sport athletes should be tailored to encourage these technique adaptations.
步幅运动学和支撑动力学之间的相互作用决定了冲刺速度。然而,支撑动力学对场地运动员有效加速度的影响需要澄清。大约 25 名男性(年龄=22.4±3.2 岁;体重=82.8±7.2kg;身高=1.81±0.07m)完成了十二次 10m 冲刺,其中六次用于运动学和动力学评估。皮尔逊相关系数(p≤0.05)检查了 0-5、5-10 和 0-10m 速度之间的关系;步幅运动学(平均步长[SL]、步频、接触时间[CT]、每个区间的飞行时间);以及支撑动力学(相对垂直、水平和合力以及冲量;合力角度;10m 冲刺中第一、第二和最后接触的水平与合力之比[RatF])。在 0-5、5-10 和 0-10m SL 与 0-5 和 0-10m 速度之间发现了关系(r=0.397-0.535)。0-5 和 0-10m 的 CT 与 5-10m 速度相关(r=-0.506 和-0.477)。最后接触的垂直力与 5-10m 速度相关(r=0.405)。在所有区间内,第二和最后接触的垂直力和合力与 CT 之间建立了关系(r=-0.398 至 0.569)。第一和第二接触的垂直冲量与 0-5m SL 相关(r=0.434 和 0.442)。受试者产生适合水平力产生的合力角度和 RatF。场地运动员更快的加速涉及更长的步幅和更短的 CT。更大的垂直力产生与更短的 CT 相关,表明力的产生效率更高。更大的加速 SL 通过更高的垂直冲量和适当的水平力来促进。场地运动员的速度训练应根据需要进行调整,以鼓励这些技术适应。