School of Chemistry, Physics and Mechanical Engineering , Queensland University of Technology (QUT) , 2 George Street , QLD 4000 , Brisbane , Australia.
Macromolecular Architectures, Institute für Technische Chemie und Polymerchemie , Karlsruhe Institut of Technology (KIT) , Engesserstraße 18 , 76131 Karlsruhe , Germany.
J Am Chem Soc. 2018 May 9;140(18):5875-5881. doi: 10.1021/jacs.8b02135. Epub 2018 Apr 17.
The need for efficient, tailor-made catalysts has inspired chemists to fuse the design principles of natural enzymes with synthetic macromolecular architectures. A highly interesting pathway mimics a metallo-enzyme's tertiary structure via the target placement of metal-ions in a tailor-made polymeric framework, resulting in catalytically active single-chain nanoparticles. Initial studies reveal unusual and promising effects, regarding both new catalyst characteristics and a high impact on product formation. These multifunctional nanoreactors, constructed from simple folded polymer chains, will lead to advanced bioinspired catalytic systems. As found in enzymes, their impact lies specifically within the defined construction of a polymeric pocket around the catalytic active cores for substrate recognition.
高效定制催化剂的需求促使化学家将天然酶的设计原理与合成大分子结构融合在一起。一种非常有趣的途径是通过在定制的聚合物框架中目标定位金属离子来模拟金属酶的三级结构,从而产生具有催化活性的单链纳米颗粒。初步研究揭示了关于新型催化剂特性和对产物形成的高影响的不寻常和有前途的效果。这些多功能纳米反应器由简单折叠的聚合物链构建而成,将导致先进的仿生催化系统。正如在酶中发现的那样,它们的影响特别在于围绕催化活性核的聚合物口袋的明确定义的构建,用于底物识别。