Department of Pharmaceutical Sciences, College of Pharmacy.
Sanders-Brown Center on Aging.
J Neurosci. 2018 May 2;38(18):4301-4315. doi: 10.1523/JNEUROSCI.2751-17.2018. Epub 2018 Apr 9.
The blood-brain barrier is dysfunctional in epilepsy, thereby contributing to seizure genesis and resistance to antiseizure drugs. Previously, several groups reported that seizures increase brain glutamate levels, which leads to barrier dysfunction. One critical component of barrier dysfunction is brain capillary leakage. Based on our preliminary data, we hypothesized that glutamate released during seizures mediates an increase in matrix-metalloproteinase (MMP) expression and activity levels, thereby contributing to barrier leakage. To test this hypothesis, we exposed isolated brain capillaries from male Sprague Dawley rats to glutamate and used an / approach of isolated brain capillaries from female Wistar rats that experienced status epilepticus as an acute seizure model. We found that exposing isolated rat brain capillaries to glutamate increased MMP-2 and MMP-9 protein and activity levels, and decreased tight junction protein levels, which resulted in barrier leakage. We confirmed these findings in rats after status epilepticus and in brain capillaries from male mice lacking cytosolic phospholipase A Together, our data support the hypothesis that glutamate released during seizures signals an increase in MMP-2 and MMP-9 protein expression and activity levels, resulting in blood-brain barrier leakage. The mechanism leading to seizure-mediated blood-brain barrier dysfunction in epilepsy is poorly understood. In the present study, we focused on defining this mechanism in the brain capillary endothelium. We demonstrate that seizures trigger a pathway that involves glutamate signaling through cytosolic phospholipase A, which increases MMP levels and decreases tight junction protein expression levels, resulting in barrier leakage. These findings may provide potential therapeutic avenues within the blood-brain barrier to limit barrier dysfunction in epilepsy and decrease seizure burden.
血脑屏障在癫痫中功能失调,从而导致癫痫发作和抗癫痫药物耐药。以前,有几个研究小组报告说,癫痫发作会增加大脑中的谷氨酸水平,从而导致屏障功能障碍。屏障功能障碍的一个关键组成部分是脑毛细血管渗漏。基于我们的初步数据,我们假设癫痫发作期间释放的谷氨酸介导基质金属蛋白酶 (MMP) 表达和活性水平的增加,从而导致屏障渗漏。为了验证这一假设,我们将来自雄性 Sprague Dawley 大鼠的分离脑毛细血管暴露于谷氨酸中,并使用经历癫痫持续状态的雌性 Wistar 大鼠的分离脑毛细血管作为急性癫痫发作模型。我们发现,将分离的大鼠脑毛细血管暴露于谷氨酸中会增加 MMP-2 和 MMP-9 蛋白和活性水平,并降低紧密连接蛋白水平,从而导致屏障渗漏。我们在癫痫持续状态后的大鼠和缺乏细胞质磷脂酶 A 的雄性小鼠的脑毛细血管中证实了这些发现。总的来说,我们的数据支持这样一种假设,即癫痫发作期间释放的谷氨酸会引发 MMP-2 和 MMP-9 蛋白表达和活性水平的增加,导致血脑屏障渗漏。导致癫痫中癫痫发作介导的血脑屏障功能障碍的机制尚未完全清楚。在本研究中,我们专注于定义脑毛细血管内皮中的这种机制。我们证明,癫痫发作触发了一条途径,该途径涉及细胞质磷脂酶 A 介导的谷氨酸信号转导,从而增加 MMP 水平并降低紧密连接蛋白表达水平,导致屏障渗漏。这些发现可能为血脑屏障内提供潜在的治疗途径,以限制癫痫中的屏障功能障碍并减少癫痫发作负担。