Suppr超能文献

从协同堵塞到横流微流控膜中的不相关堵塞。

From cooperative to uncorrelated clogging in cross-flow microfluidic membranes.

机构信息

Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands.

Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands.

出版信息

Sci Rep. 2018 Apr 9;8(1):5687. doi: 10.1038/s41598-018-24088-6.

Abstract

The operational lifetime of filtration membranes is reduced by the clogging of pores and subsequent build-up of a fouling or cake layer. Designing membrane operations in which clogging is delayed or even mitigated completely, requires in-depth insight into its origins. Due to the complexity of the clogging process, simplified model membranes fabricated in microfluidic chips have emerged as a powerful tool to study how clogs emerge and deteriorate membrane efficiency. However, to date, these have focussed solely on dead-end filtration, while cross-flow filtration is of greater practical relevance at the industrial scale. As such, the microscopic mechanisms of clogging in crossflow geometries have remained relatively ill-explored. Here we use a microfluidic filtration model to probe the kinetics and mechanisms of clogging in crossflow. Our study exposes two findings: (i) the primary clogging rate of individual pores depends only on the trans-membrane flux, whose strong effects are explained quantitatively by extending existing models with a term for flux-controlled flow-enhanced barrier crossing, (ii) cross-membrane flow affects the pore-pore communication, leading to a transition from correlated to uncorrelated clogging of the membrane, which we explain qualitatively by deriving a dimensionless number which captures two essential regimes of clogging at the microscale.

摘要

过滤膜的运行寿命会因孔堵塞以及随后形成的污垢或滤饼层而缩短。要设计出能延迟甚至完全避免堵塞的膜操作,就需要深入了解堵塞的成因。由于堵塞过程的复杂性,在微流控芯片中制造的简化模型膜已成为研究堵塞如何产生和降低膜效率的有力工具。然而,迄今为止,这些研究仅集中于死端过滤,而在工业规模上,错流过滤更具实际意义。因此,错流几何形状中堵塞的微观机制仍未得到充分探索。在这里,我们使用微流过滤模型来探测错流中的堵塞动力学和机制。我们的研究揭示了两个发现:(i)单个孔的主要堵塞速率仅取决于跨膜通量,其强烈影响可通过扩展现有模型并用通量控制的流动增强势垒穿越项来定量解释;(ii)跨膜流动会影响孔-孔之间的连通性,导致膜的堵塞从相关状态向不相关状态转变,我们通过推导出一个无量纲数来定性解释这一现象,该数捕捉了微尺度下堵塞的两个基本状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e3d/5890277/fea2edb09049/41598_2018_24088_Fig1_HTML.jpg

相似文献

1
From cooperative to uncorrelated clogging in cross-flow microfluidic membranes.
Sci Rep. 2018 Apr 9;8(1):5687. doi: 10.1038/s41598-018-24088-6.
2
Transition-state theory predicts clogging at the microscale.
Sci Rep. 2016 Jun 22;6:28450. doi: 10.1038/srep28450.
3
Impact of bacterial streamers on biofouling of microfluidic filtration systems.
Biomicrofluidics. 2018 Aug 20;12(4):044116. doi: 10.1063/1.5025359. eCollection 2018 Jul.
4
A new approach for modeling flux variation in membrane filtration and experimental verification.
Water Res. 2019 Dec 1;166:115027. doi: 10.1016/j.watres.2019.115027. Epub 2019 Aug 29.
5
High-throughput and clogging-free microfluidic filtration platform for on-chip cell separation from undiluted whole blood.
Biomicrofluidics. 2016 Feb 12;10(1):014118. doi: 10.1063/1.4941985. eCollection 2016 Jan.
6
A combined network model for membrane fouling.
J Colloid Interface Sci. 2014 Oct 15;432:10-8. doi: 10.1016/j.jcis.2014.06.021. Epub 2014 Jun 26.
7
Flow dynamics through discontinuous clogs of rigid particles in tapered microchannels.
Sci Rep. 2022 Dec 30;12(1):22587. doi: 10.1038/s41598-022-25831-w.
8
Clogging of microfluidic systems.
Soft Matter. 2016 Dec 21;13(1):37-48. doi: 10.1039/c6sm01879c.
9
Size-based analysis of virus removal filter fouling using fractionated protein aggregates.
Biotechnol Prog. 2024 Jan-Feb;40(1):e3391. doi: 10.1002/btpr.3391. Epub 2023 Sep 21.
10
Pore blocking mechanisms during early stages of membrane fouling by colloids.
J Colloid Interface Sci. 2008 Dec 15;328(2):464-9. doi: 10.1016/j.jcis.2008.09.028. Epub 2008 Sep 17.

引用本文的文献

1
Recent Advances in Microfluidics-Based Monitoring of Waterborne Pathogens: From Isolation to Detection.
Micromachines (Basel). 2025 Apr 14;16(4):462. doi: 10.3390/mi16040462.
2
Clarification of large-volume bacterial cultures using a centrifuge-free protocol.
J Appl Microbiol. 2022 Aug;133(2):870-882. doi: 10.1111/jam.15608. Epub 2022 May 16.
3
5
Unravelling colloid filter cake motions in membrane cleaning procedures.
Sci Rep. 2020 Nov 18;10(1):20043. doi: 10.1038/s41598-020-76970-x.
6
Microfluidics Used as a Tool to Understand and Optimize Membrane Filtration Processes.
Membranes (Basel). 2020 Oct 29;10(11):316. doi: 10.3390/membranes10110316.
7
Label-free microfluidic sorting of microparticles.
APL Bioeng. 2019 Dec 11;3(4):041504. doi: 10.1063/1.5120501. eCollection 2019 Dec.
9
Microfluidic model systems used to emulate processes occurring during soft particle filtration.
Sci Rep. 2019 Feb 28;9(1):3063. doi: 10.1038/s41598-019-39820-z.
10
Size Fractionation of Fluorescent Graphene Quantum Dots Using a Cross-Flow Membrane Filtration System.
Nanomaterials (Basel). 2018 Nov 21;8(11):959. doi: 10.3390/nano8110959.

本文引用的文献

1
Soft Lithography.
Angew Chem Int Ed Engl. 1998 Mar 16;37(5):550-575. doi: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G.
2
Effect of long-range electrostatic repulsion on pore clogging during microfiltration.
Phys Rev E. 2016 Dec;94(6-1):063108. doi: 10.1103/PhysRevE.94.063108. Epub 2016 Dec 19.
3
Clogging of microfluidic systems.
Soft Matter. 2016 Dec 21;13(1):37-48. doi: 10.1039/c6sm01879c.
4
Transition-state theory predicts clogging at the microscale.
Sci Rep. 2016 Jun 22;6:28450. doi: 10.1038/srep28450.
5
Microfluidic colloid filtration.
Sci Rep. 2016 Mar 1;6:22376. doi: 10.1038/srep22376.
6
Fouling in microstructured devices: a review.
Chem Commun (Camb). 2015 May 14;51(39):8213-28. doi: 10.1039/c4cc07849g.
7
A combined network model for membrane fouling.
J Colloid Interface Sci. 2014 Oct 15;432:10-8. doi: 10.1016/j.jcis.2014.06.021. Epub 2014 Jun 26.
8
Collective dynamics of flowing colloids during pore clogging.
Soft Matter. 2014 Sep 7;10(33):6303-15. doi: 10.1039/c4sm00869c. Epub 2014 Jul 16.
9
Towards a description of particulate fouling: from single particle deposition to clogging.
Adv Colloid Interface Sci. 2012 Dec 1;185-186:34-76. doi: 10.1016/j.cis.2012.10.001. Epub 2012 Oct 18.
10
Colloidal surface interactions and membrane fouling: investigations at pore scale.
Adv Colloid Interface Sci. 2011 May 11;164(1-2):2-11. doi: 10.1016/j.cis.2010.10.005. Epub 2010 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验