Suppr超能文献

神经刺激与可塑性及再生的分子机制:综述

Neural Stimulation and Molecular Mechanisms of Plasticity and Regeneration: A Review.

作者信息

Hogan Matthew K, Hamilton Gillian F, Horner Philip J

机构信息

Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States.

出版信息

Front Cell Neurosci. 2020 Oct 14;14:271. doi: 10.3389/fncel.2020.00271. eCollection 2020.

Abstract

Neural stimulation modulates the depolarization of neurons, thereby triggering activity-associated mechanisms of neuronal plasticity. Activity-associated mechanisms in turn play a major role in post-mitotic structure and function of adult neurons. Our understanding of the interactions between neuronal behavior, patterns of neural activity, and the surrounding environment is evolving at a rapid pace. Brain derived neurotrophic factor is a critical mediator of activity-associated plasticity, while multiple immediate early genes mediate plasticity of neurons following bouts of neural activity. New research has uncovered genetic mechanisms that govern the expression of DNA following changes in neural activity patterns, including RNAPII pause-release and activity-associated double stranded breaks. Discovery of novel mechanisms governing activity-associated plasticity of neurons hints at a layered and complex molecular control of neuronal response to depolarization. Importantly, patterns of depolarization in neurons are shown to be important mediators of genetic expression patterns and molecular responses. More research is needed to fully uncover the molecular response of different types of neurons-to-activity patterns; however, known responses might be leveraged to facilitate recovery after neural damage. Physical rehabilitation through passive or active exercise modulates neurotrophic factor expression in the brain and spinal cord and can initiate cortical plasticity commensurate with functional recovery. Rehabilitation likely relies on activity-associated mechanisms; however, it may be limited in its application. Electrical and magnetic stimulation direct specific activity patterns not accessible through passive or active exercise and work synergistically to improve standing, walking, and forelimb use after injury. Here, we review emerging concepts in the molecular mechanisms of activity-derived plasticity in order to highlight opportunities that could add value to therapeutic protocols for promoting recovery of function after trauma, disease, or age-related functional decline.

摘要

神经刺激调节神经元的去极化,从而触发与活动相关的神经元可塑性机制。与活动相关的机制反过来在成年神经元的有丝分裂后结构和功能中起主要作用。我们对神经元行为、神经活动模式和周围环境之间相互作用的理解正在迅速发展。脑源性神经营养因子是与活动相关的可塑性的关键介质,而多个即早基因介导神经活动发作后神经元的可塑性。新的研究发现了在神经活动模式改变后控制DNA表达的遗传机制,包括RNA聚合酶II的暂停释放和与活动相关的双链断裂。对控制神经元与活动相关可塑性的新机制的发现暗示了对神经元去极化反应的分层和复杂分子控制。重要的是,神经元中的去极化模式被证明是基因表达模式和分子反应的重要介质。需要更多的研究来全面揭示不同类型神经元对活动模式的分子反应;然而,已知的反应可能有助于促进神经损伤后的恢复。通过被动或主动运动进行的物理康复可调节脑和脊髓中神经营养因子的表达,并可启动与功能恢复相称的皮质可塑性。康复可能依赖于与活动相关的机制;然而,其应用可能受到限制。电刺激和磁刺激引导特定的活动模式,这些模式是被动或主动运动无法实现的,并且协同作用以改善损伤后的站立、行走和前肢使用。在这里,我们综述了活动衍生可塑性分子机制中的新兴概念,以突出那些可能为促进创伤、疾病或与年龄相关的功能衰退后功能恢复的治疗方案增加价值的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/364f/7591397/8643958ca9cd/fncel-14-00271-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验