DTU Environment, Technical University of Denmark, Bygningstorvet B115, 2800 Kongens Lyngby, Denmark; Veolia Water Technologies AB, AnoxKaldnes, Klosterängsvägen 11A, SE-226 47 Lund, Sweden.
DTU Environment, Technical University of Denmark, Bygningstorvet B115, 2800 Kongens Lyngby, Denmark.
Water Res. 2018 Jul 1;138:333-345. doi: 10.1016/j.watres.2018.03.014. Epub 2018 Mar 7.
The subdivision of biofilm reactor in two or more stages (i.e., reactor staging) represents an option for process optimisation of biological treatment. In our previous work, we showed that the gradient of influent organic substrate availability (induced by the staging) can influence the microbial activity (i.e., denitrification and pharmaceutical biotransformation kinetics) of a denitrifying three-stage Moving Bed Biofilm Reactor (MBBR) system. However, it is unclear whether staging and thus the long-term exposure to varying organic carbon type and loading influences the microbial community structure and diversity. In this study, we investigated biofilm structure and diversity in the three-stage MBBR system (S) compared to a single-stage configuration (U) and their relationship with microbial functions. Results from 16S rRNA amplicon libraries revealed a significantly higher microbial richness in the staged MBBR (at 99% sequence similarity) compared to single-stage MBBR. A more even and diverse microbial community was selected in the last stage of S (S3), likely due to exposure to carbon limitation during continuous-flow operation. A core of OTUs was shared in both systems, consisting of Burkholderiales, Xanthomonadales, Flavobacteriales and Sphingobacteriales, while MBBR staging selected for specific taxa (i.e., Candidate division WS6 and Deinococcales). Results from quantitative PCR (qPCR) showed that S3 exhibited the lowest abundance of 16S rRNA but the highest abundance of atypical nosZ, suggesting a selection of microbes with more diverse N-metabolism (i.e., incomplete denitrifiers) in the stage exposed to the lowest carbon availability. A positive correlation (p < 0.05) was observed between removal rate constants of several pharmaceuticals with abundance of relevant denitrifying genes, but not with biodiversity. Despite the previously suggested positive relationship between microbial diversity and functionality in macrobial and microbial ecosystems, this was not observed in the current study, indicating a need to further investigate structure-function relationships for denitrifying systems.
生物膜反应器的分段(即反应器分段)是生物处理过程优化的一种选择。在我们之前的工作中,我们表明,进水有机底物可用性的梯度(由分段引起)可以影响反硝化三阶段移动床生物膜反应器(MBBR)系统的微生物活性(即反硝化和药物生物转化动力学)。然而,尚不清楚分段以及长期暴露于不同类型和负荷的有机碳是否会影响微生物群落结构和多样性。在这项研究中,我们研究了三阶段 MBBR 系统(S)中的生物膜结构和多样性,与单阶段配置(U)相比,以及它们与微生物功能的关系。16S rRNA 扩增子文库的结果表明,分段 MBBR 中的微生物丰富度明显更高(在 99%序列相似性下),而单阶段 MBBR 中的微生物丰富度更高。S 的最后一个阶段(S3)选择了更均匀和多样化的微生物群落,这可能是由于连续流动操作中暴露于碳限制。两个系统中都有一个核心 OTU,由 Burkholderiales、Xanthomonadales、Flavobacteriales 和 Sphingobacteriales 组成,而 MBBR 分段选择了特定的分类群(即候选门 WS6 和 Deinococcales)。定量 PCR(qPCR)的结果表明,S3 的 16S rRNA 丰度最低,但非典型 nosZ 的丰度最高,这表明在暴露于最低碳可用性的阶段选择了具有更多样化氮代谢的微生物(即不完全反硝化菌)。几种药物的去除速率常数与相关反硝化基因的丰度呈正相关(p < 0.05),但与生物多样性无关。尽管在宏观和微生物生态系统中已经提出了微生物多样性与功能之间的积极关系,但在本研究中并未观察到,这表明需要进一步研究反硝化系统的结构-功能关系。