Suppr超能文献

在混合培养物中对高亲和力的II类一氧化氮还原菌进行选择性富集。

Selective enrichment of high-affinity clade II NO-reducers in a mixed culture.

作者信息

Laureni Michele, Corbera-Rubio Francesc, Kim DaeHyun Daniel, Browne Savanna, Roothans Nina, Weissbrodt David G, Olavaria Karel, de Jonge Nadieh, Yoon Sukhwan, Pabst Martin, van Loosdrecht Mark C M

机构信息

Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ NL- 2629, The Netherlands.

Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daehakro 291, KAIST, Daejeon 34141, South Korea.

出版信息

ISME Commun. 2025 Feb 5;5(1):ycaf022. doi: 10.1093/ismeco/ycaf022. eCollection 2025 Jan.

Abstract

Microorganisms encoding for the NO reductase (NosZ) are the only known biological sink of the potent greenhouse gas NO and are central to global NO mitigation efforts. Clade II NosZ populations are of particular biotechnological interest as they usually feature high NO affinities and often lack other denitrification genes. We focus on the yet-unresolved ecological constraints selecting for different NO-reducers strains and controlling the assembly of NO-respiring communities. Two planktonic NO-respiring mixed cultures were enriched at low dilution rates under limiting and excess dissolved NO availability to assess the impact of substrate affinity and NO cytotoxicity, respectively. Genome-resolved metaproteomics was used to infer the metabolism of the enriched populations. Under NO limitation, clade II NO-reducers fully outcompeted clade I affiliates, a scenario previously only theorized based on pure-cultures. All enriched NO-reducers encoded and expressed the sole clade II NosZ, while also possessing other denitrification genes. Two and genera affiliates dominated the culture, and we hypothesize their coexistence to be explained by the genome-inferred metabolic exchange of cobalamin intermediates. Under excess NO, clade I and II populations coexisted; yet, proteomic evidence suggests that clade II affiliates respired most of the NO, outcompeting clade I affiliates. The single dominant NO-reducer (genus ) notably expressed most cobalamin biosynthesis marker genes, likely to contrast the continuous cobalamin inactivation by dissolved cytotoxic NO concentrations (400 μM). Ultimately, our results strongly suggest the solids dilution rate to play a pivotal role in controlling the selection among NosZ clades, albeit the conditions selecting for genomes possessing the sole remain elusive. We furthermore highlight the potential significance of NO-cobalamin interactions in shaping the composition of NO-respiring microbiomes.

摘要

编码一氧化氮还原酶(NosZ)的微生物是强效温室气体一氧化氮已知的唯一生物汇,对于全球一氧化氮减排努力至关重要。进化枝II的NosZ群体具有特殊的生物技术意义,因为它们通常具有高一氧化氮亲和力,且往往缺乏其他反硝化基因。我们关注尚未解决的生态限制因素,这些因素选择了不同的一氧化氮还原菌株并控制了一氧化氮呼吸群落的组装。在有限和过量溶解一氧化氮可利用性条件下,以低稀释率富集了两种浮游一氧化氮呼吸混合培养物,分别评估底物亲和力和一氧化氮细胞毒性的影响。利用基因组解析元蛋白质组学推断富集群体的代谢。在一氧化氮限制条件下,进化枝II的一氧化氮还原菌完全胜过进化枝I的同类菌,这种情况以前仅在纯培养基础上进行过理论推测。所有富集的一氧化氮还原菌都编码并表达了唯一的进化枝II的NosZ,同时还拥有其他反硝化基因。两个属的同类菌在培养物中占主导地位,我们推测它们的共存可以通过钴胺素中间体的基因组推断代谢交换来解释。在一氧化氮过量的情况下,进化枝I和II的群体共存;然而,蛋白质组学证据表明,进化枝II的同类菌呼吸了大部分一氧化氮,胜过进化枝I的同类菌。单一优势一氧化氮还原菌(属)显著表达了大多数钴胺素生物合成标记基因,可能是为了对抗溶解的细胞毒性一氧化氮浓度(400μM)导致的钴胺素持续失活。最终,我们的结果强烈表明,固体稀释率在控制NosZ进化枝之间的选择中起关键作用,尽管选择拥有唯一的基因组的条件仍然难以捉摸。我们还强调了一氧化氮 - 钴胺素相互作用在塑造一氧化氮呼吸微生物群落组成方面的潜在重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5746/11906303/64d4bf07afa9/ycaf022f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验