Suppr超能文献

北方树木对气候变化的模拟净碳增益响应:光合参数选择和驯化的影响。

Modelled net carbon gain responses to climate change in boreal trees: Impacts of photosynthetic parameter selection and acclimation.

作者信息

Stinziano Joseph R, Bauerle William L, Way Danielle A

机构信息

Department of Biology, The University of Western Ontario, London, Ontario, Canada.

Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado.

出版信息

Glob Chang Biol. 2019 Apr;25(4):1445-1465. doi: 10.1111/gcb.14530. Epub 2018 Dec 13.

Abstract

Boreal forests are crucial in regulating global vegetation-atmosphere feedbacks, but the impact of climate change on boreal tree carbon fluxes is still unclear. Given the sensitivity of global vegetation models to photosynthetic and respiration parameters, we determined how predictions of net carbon gain (C-gain) respond to variation in these parameters using a stand-level model (MAESTRA). We also modelled how thermal acclimation of photosynthetic and respiratory temperature sensitivity alters predicted net C-gain responses to climate change. We modelled net C-gain of seven common boreal tree species under eight climate scenarios across a latitudinal gradient to capture a range of seasonal temperature conditions. Physiological parameter values were taken from the literature together with different approaches for thermally acclimating photosynthesis and respiration. At high latitudes, net C-gain was stimulated up to 400% by elevated temperatures and CO in the autumn but suppressed at the lowest latitudes during midsummer under climate scenarios that included warming. Modelled net C-gain was more sensitive to photosynthetic capacity parameters (V , J , Arrhenius temperature response parameters, and the ratio of J to V ) than stomatal conductance or respiration parameters. The effect of photosynthetic thermal acclimation depended on the temperatures where it was applied: acclimation reduced net C-gain by 10%-15% within the temperature range where the equations were derived but decreased net C-gain by 175% at temperatures outside this range. Thermal acclimation of respiration had small, but positive, impacts on net C-gain. We show that model simulations are highly sensitive to variation in photosynthetic parameters and highlight the need to better understand the mechanisms and drivers underlying this variability (e.g., whether variability is environmentally and/or biologically driven) for further model improvement.

摘要

北方森林在调节全球植被 - 大气反馈方面至关重要,但气候变化对北方树木碳通量的影响仍不明确。鉴于全球植被模型对光合作用和呼吸作用参数的敏感性,我们使用林分水平模型(MAESTRA)确定了净碳增益(C - gain)的预测如何响应这些参数的变化。我们还模拟了光合作用和呼吸温度敏感性的热适应如何改变预测的净C - gain对气候变化的响应。我们在一个纬度梯度上的八种气候情景下,对七种常见的北方树种的净C - gain进行了建模,以捕捉一系列季节性温度条件。生理参数值取自文献以及用于光合作用和呼吸作用热适应的不同方法。在高纬度地区,秋季温度和二氧化碳升高会使净C - gain增加高达400%,但在包括变暖的气候情景下,仲夏时在最低纬度地区净C - gain会受到抑制。模拟的净C - gain对光合能力参数(V、J、阿伦尼乌斯温度响应参数以及J与V的比率)比对气孔导度或呼吸作用参数更敏感。光合作用热适应的影响取决于其应用的温度:在推导方程的温度范围内,热适应使净C - gain降低了10% - 15%,但在该范围之外的温度下,净C - gain降低了175%。呼吸作用的热适应对净C - gain有小但积极的影响。我们表明模型模拟对光合参数的变化高度敏感,并强调需要更好地理解这种变异性背后的机制和驱动因素(例如,变异性是由环境和/或生物驱动的),以便进一步改进模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验