Suppr超能文献

激肽释放酶逐步评分揭示了具有预后意义的三种甲状腺乳头状癌亚型。

Kallikreins Stepwise Scoring Reveals Three Subtypes of Papillary Thyroid Cancer with Prognostic Implications.

机构信息

1 Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Badalona, Spain .

2 Consortium for the Study of Thyroid Cancer (CECaT) , Catalonia, Spain .

出版信息

Thyroid. 2018 May;28(5):601-612. doi: 10.1089/thy.2017.0501.

Abstract

BACKGROUND

Papillary thyroid cancer (PTC) is the most common type of thyroid cancer. Unlike most cancers, its incidence has dramatically increased in the last decades mainly due to increased diagnosis of indolent PTCs. Adequate risk stratification is crucial to avoid the over-treatment of low-risk patients, as well as the under-treatment of high-risk patients, but the currently available markers are still insufficient. Kallikreins (KLKs) are emergent biomarkers in cancer, but their involvement in PTC is unknown.

METHODS

This study analyzed DNA methylation (HumanMethylation arrays) and gene expression (RNA-Seq) of KLKs, BRAF and RAS mutations, and clinical data from four published thyroid cancer data sets including normal and tumor tissues (n = 73, n = 475, n = 20, and n = 82) as discovery, training, and validation series. The C4.5 classification algorithm was used to generate a decision tree. Disease-free survival was estimated using Kaplan-Meier and Cox approaches. Specific analyses were performed using real-time polymerase chain reaction and immunohistochemistry.

RESULTS

The entire KLK family was deregulated in PTC, displaying a specific epigenetic and transcriptional profile strongly associated with BRAF or RAS mutations. Thus, a decision-tree algorithm was developed based on three KLKs with >80% sensitivity and >95% specificity, identifying BRAF- and RAS-mutated tumors. Notably, tumors lacking these mutations were classified as BRAF- or RAS-like. Most importantly, the KLK algorithm uncovered a novel PTC subtype showing favorable prognostic features.

CONCLUSIONS

The KLK algorithm could lead to a new clinically applicable strategy with important implications for the risk stratification of PTC and the management of patients.

摘要

背景

甲状腺乳头状癌(PTC)是最常见的甲状腺癌类型。与大多数癌症不同,其发病率在过去几十年中显著增加,主要是由于惰性 PTC 的诊断增加。充分的风险分层对于避免对低危患者的过度治疗以及对高危患者的治疗不足至关重要,但目前可用的标志物仍然不足。激肽释放酶(KLKs)是癌症中的新兴生物标志物,但它们在 PTC 中的作用尚不清楚。

方法

本研究分析了四个已发表的甲状腺癌数据集(包括正常和肿瘤组织)中的 KLKs、BRAF 和 RAS 突变的 DNA 甲基化(HumanMethylation 阵列)和基因表达(RNA-Seq)以及临床数据(n=73,n=475,n=20,n=82),作为发现、训练和验证系列。使用 C4.5 分类算法生成决策树。使用 Kaplan-Meier 和 Cox 方法估计无病生存率。使用实时聚合酶链反应和免疫组织化学进行特定分析。

结果

整个 KLK 家族在 PTC 中失调,表现出与 BRAF 或 RAS 突变强烈相关的特定表观遗传和转录谱。因此,基于三个 KLK 开发了一种决策树算法,具有>80%的灵敏度和>95%的特异性,可识别 BRAF 和 RAS 突变的肿瘤。值得注意的是,缺乏这些突变的肿瘤被分类为 BRAF 或 RAS 样。最重要的是,KLK 算法揭示了一种新的 PTC 亚型,具有有利的预后特征。

结论

KLK 算法可以为 PTC 的风险分层和患者管理提供新的临床应用策略,具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验