Department of Biochemistry of Neurodegenerative Diseases, Ruhr University Bochum, D-44801 Bochum, Germany.
Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, and Calgary Prion Research Unit, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.
J Biol Chem. 2018 May 25;293(21):8020-8031. doi: 10.1074/jbc.RA117.000990. Epub 2018 Apr 10.
A central step in the pathogenesis of prion diseases is the conformational transition of the cellular prion protein (PrP) into the scrapie isoform, denoted PrP Studies in transgenic mice have indicated that this conversion requires a direct interaction between PrP and PrP; however, insights into the underlying mechanisms are still missing. Interestingly, only a subfraction of PrP is converted in scrapie-infected cells, suggesting that not all PrP species are suitable substrates for the conversion. On the basis of the observation that PrP can form homodimers under physiological conditions with the internal hydrophobic domain (HD) serving as a putative dimerization domain, we wondered whether PrP dimerization is involved in the formation of neurotoxic and/or infectious PrP conformers. Here, we analyzed the possible impact on dimerization of pathogenic mutations in the HD that induce a spontaneous neurodegenerative disease in transgenic mice. Similarly to wildtype (WT) PrP, the neurotoxic variant PrP(AV3) formed homodimers as well as heterodimers with WTPrP Notably, forced PrP dimerization via an intermolecular disulfide bond did not interfere with its maturation and intracellular trafficking. Covalently linked PrP dimers were complex glycosylated, GPI-anchored, and sorted to the outer leaflet of the plasma membrane. However, forced PrP dimerization completely blocked its conversion into PrP in chronically scrapie-infected mouse neuroblastoma cells. Moreover, PrP dimers had a dominant-negative inhibition effect on the conversion of monomeric PrP Our findings suggest that PrP monomers are the major substrates for PrP propagation and that it may be possible to halt prion formation by stabilizing PrP dimers.
朊病毒病发病机制的一个中心步骤是细胞朊蛋白 (PrP) 的构象转变为瘙痒异构体,记为 PrP。转基因小鼠的研究表明,这种转化需要 PrP 与 PrP 之间的直接相互作用;然而,其潜在机制仍不清楚。有趣的是,只有朊病毒感染细胞中的一小部分 PrP 被转化,这表明并非所有 PrP 物种都是转化的合适底物。基于 PrP 在生理条件下可以形成同源二聚体的观察结果,内部疏水区 (HD) 作为潜在的二聚化结构域,我们想知道 PrP 二聚化是否参与形成神经毒性和/或传染性 PrP 构象。在这里,我们分析了 HD 中致病性突变对二聚化的可能影响,这些突变会在转基因小鼠中诱导自发性神经退行性疾病。与野生型 (WT) PrP 类似,神经毒性变体 PrP(AV3) 形成同源二聚体以及与 WTPrP 的异源二聚体。值得注意的是,通过分子间二硫键强制形成 PrP 二聚体不会干扰其成熟和细胞内运输。共价连接的 PrP 二聚体被复杂糖基化、GPI 锚定,并分选到质膜的外叶。然而,强制 PrP 二聚化完全阻止了其在慢性瘙痒感染的小鼠神经母细胞瘤中的转化为 PrP。此外,PrP 二聚体对单体 PrP 的转化具有显性抑制作用。我们的研究结果表明,PrP 单体是 PrP 传播的主要底物,通过稳定 PrP 二聚体可能阻止朊病毒的形成。