Barber Fernando, García-Fernández Ignacio, Lozano Miguel, Sebastian Rafael
Computational Multiscale Simulation Lab (CoMMLab), Departament d'Informàtica, Universitat de València, Burjasot 46100, Spain.
Int J Numer Method Biomed Eng. 2018 Jul;34(7):e2988. doi: 10.1002/cnm.2988. Epub 2018 May 4.
The reconstruction of the ventricular cardiac conduction system (CCS) from patient-specific data is a challenging problem. High-resolution imaging techniques have allowed only the segmentation of proximal sections of the CCS from images acquired ex vivo. In this paper, we present an algorithm to estimate the location of a set of Purkinje-myocardial junctions (PMJs) from electro-anatomical maps, as those acquired during radio-frequency ablation procedures. The method requires a mesh representing the myocardium with local activation time measurements on a subset of nodes. We calculate the backwards propagation of the electrical signal from the measurement points to all the points in the mesh to define a set of candidate PMJs that is iteratively refined. The algorithm has been tested on several Purkinje network configurations, with simulated activation maps, subject to different error amplitudes. The results show that the method is able to build a set of PMJs that explain the observed activation map for different synthetic CCS configurations. In the tests, the average error in the predicted activation time is below the amplitude of the error applied to the data.
从患者特定数据重建心室心脏传导系统(CCS)是一个具有挑战性的问题。高分辨率成像技术仅允许从离体采集的图像中分割出CCS的近端部分。在本文中,我们提出了一种算法,用于从电解剖图中估计一组浦肯野 - 心肌连接点(PMJ)的位置,就像在射频消融手术期间获取的那些图一样。该方法需要一个表示心肌的网格,并在节点的一个子集上进行局部激活时间测量。我们计算电信号从测量点到网格中所有点的反向传播,以定义一组候选PMJ,并对其进行迭代优化。该算法已在几种浦肯野网络配置上进行了测试,使用模拟激活图,并受到不同误差幅度的影响。结果表明,该方法能够构建一组PMJ,以解释不同合成CCS配置下观察到的激活图。在测试中,预测激活时间的平均误差低于应用于数据的误差幅度。