Department of Chemistry , Vanderbilt University , 7330 Stevenson Center, Station B 351822 , Nashville , Tennessee 37235 , United States.
J Chem Inf Model. 2018 May 29;58(5):1021-1036. doi: 10.1021/acs.jcim.7b00398. Epub 2018 Apr 19.
Partial covalent interactions (PCIs) in proteins, which include hydrogen bonds, salt bridges, cation-π, and π-π interactions, contribute to thermodynamic stability and facilitate interactions with other biomolecules. Several score functions have been developed within the Rosetta protein modeling framework that identify and evaluate these PCIs through analyzing the geometry between participating atoms. However, we hypothesize that PCIs can be unified through a simplified electron orbital representation. To test this hypothesis, we have introduced orbital based chemical descriptors for PCIs into Rosetta, called the PCI score function. Optimal geometries for the PCIs are derived from a statistical analysis of high-quality protein structures obtained from the Protein Data Bank (PDB), and the relative orientation of electron deficient hydrogen atoms and electron-rich lone pair or π orbitals are evaluated. We demonstrate that nativelike geometries of hydrogen bonds, salt bridges, cation-π, and π-π interactions are recapitulated during minimization of protein conformation. The packing density of tested protein structures increased from the standard score function from 0.62 to 0.64, closer to the native value of 0.70. Overall, rotamer recovery improved when using the PCI score function (75%) as compared to the standard Rosetta score function (74%). The PCI score function represents an improvement over the standard Rosetta score function for protein model scoring; in addition, it provides a platform for future directions in the analysis of small molecule to protein interactions, which depend on partial covalent interactions.
蛋白质中的部分共价相互作用(PCIs),包括氢键、盐桥、阳离子-π 和 π-π 相互作用,有助于热力学稳定性并促进与其他生物分子的相互作用。在 Rosetta 蛋白质建模框架内已经开发了几种评分函数,通过分析参与原子之间的几何形状来识别和评估这些 PCIs。然而,我们假设可以通过简化的电子轨道表示来统一 PCIs。为了验证这一假设,我们已经在 Rosetta 中引入了基于轨道的 PCIs 化学描述符,称为 PCI 评分函数。PCIs 的最佳几何形状是从从蛋白质数据库(PDB)中获得的高质量蛋白质结构的统计分析中得出的,评估电子缺氢原子和富电子孤对或π轨道的相对取向。我们证明,在蛋白质构象最小化过程中,氢键、盐桥、阳离子-π 和 π-π 相互作用的天然样几何形状得到了再现。经过测试的蛋白质结构的堆积密度从标准评分函数的 0.62 增加到 0.64,更接近天然值 0.70。总体而言,与使用标准 Rosetta 评分函数(74%)相比,使用 PCI 评分函数时,构象恢复更好(75%)。PCI 评分函数在蛋白质模型评分方面优于标准 Rosetta 评分函数;此外,它为小分子与蛋白质相互作用的分析提供了一个平台,这取决于部分共价相互作用。