Suppr超能文献

罗塞塔在蛋白质结构预测和设计中对部分共价相互作用的整体方法。

Holistic Approach to Partial Covalent Interactions in Protein Structure Prediction and Design with Rosetta.

机构信息

Department of Chemistry , Vanderbilt University , 7330 Stevenson Center, Station B 351822 , Nashville , Tennessee 37235 , United States.

出版信息

J Chem Inf Model. 2018 May 29;58(5):1021-1036. doi: 10.1021/acs.jcim.7b00398. Epub 2018 Apr 19.

Abstract

Partial covalent interactions (PCIs) in proteins, which include hydrogen bonds, salt bridges, cation-π, and π-π interactions, contribute to thermodynamic stability and facilitate interactions with other biomolecules. Several score functions have been developed within the Rosetta protein modeling framework that identify and evaluate these PCIs through analyzing the geometry between participating atoms. However, we hypothesize that PCIs can be unified through a simplified electron orbital representation. To test this hypothesis, we have introduced orbital based chemical descriptors for PCIs into Rosetta, called the PCI score function. Optimal geometries for the PCIs are derived from a statistical analysis of high-quality protein structures obtained from the Protein Data Bank (PDB), and the relative orientation of electron deficient hydrogen atoms and electron-rich lone pair or π orbitals are evaluated. We demonstrate that nativelike geometries of hydrogen bonds, salt bridges, cation-π, and π-π interactions are recapitulated during minimization of protein conformation. The packing density of tested protein structures increased from the standard score function from 0.62 to 0.64, closer to the native value of 0.70. Overall, rotamer recovery improved when using the PCI score function (75%) as compared to the standard Rosetta score function (74%). The PCI score function represents an improvement over the standard Rosetta score function for protein model scoring; in addition, it provides a platform for future directions in the analysis of small molecule to protein interactions, which depend on partial covalent interactions.

摘要

蛋白质中的部分共价相互作用(PCIs),包括氢键、盐桥、阳离子-π 和 π-π 相互作用,有助于热力学稳定性并促进与其他生物分子的相互作用。在 Rosetta 蛋白质建模框架内已经开发了几种评分函数,通过分析参与原子之间的几何形状来识别和评估这些 PCIs。然而,我们假设可以通过简化的电子轨道表示来统一 PCIs。为了验证这一假设,我们已经在 Rosetta 中引入了基于轨道的 PCIs 化学描述符,称为 PCI 评分函数。PCIs 的最佳几何形状是从从蛋白质数据库(PDB)中获得的高质量蛋白质结构的统计分析中得出的,评估电子缺氢原子和富电子孤对或π轨道的相对取向。我们证明,在蛋白质构象最小化过程中,氢键、盐桥、阳离子-π 和 π-π 相互作用的天然样几何形状得到了再现。经过测试的蛋白质结构的堆积密度从标准评分函数的 0.62 增加到 0.64,更接近天然值 0.70。总体而言,与使用标准 Rosetta 评分函数(74%)相比,使用 PCI 评分函数时,构象恢复更好(75%)。PCI 评分函数在蛋白质模型评分方面优于标准 Rosetta 评分函数;此外,它为小分子与蛋白质相互作用的分析提供了一个平台,这取决于部分共价相互作用。

相似文献

3
n-->pi* interactions in proteins.蛋白质中的 n—>pi* 相互作用。
Nat Chem Biol. 2010 Aug;6(8):615-20. doi: 10.1038/nchembio.406. Epub 2010 Jul 11.
5
Interplay of hydrogen bonds and n→π* interactions in proteins.蛋白质中氢键和 n→π* 相互作用的相互影响。
J Am Chem Soc. 2013 Dec 11;135(49):18682-8. doi: 10.1021/ja4106122. Epub 2013 Dec 3.
10
The n→π* Interaction.n→π* 相互作用。
Acc Chem Res. 2017 Aug 15;50(8):1838-1846. doi: 10.1021/acs.accounts.7b00121. Epub 2017 Jul 23.

本文引用的文献

1
The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design.用于大分子建模与设计的罗塞塔全原子能量函数。
J Chem Theory Comput. 2017 Jun 13;13(6):3031-3048. doi: 10.1021/acs.jctc.7b00125. Epub 2017 May 12.
3
Protocols for Molecular Modeling with Rosetta3 and RosettaScripts.使用Rosetta3和RosettaScripts进行分子建模的协议。
Biochemistry. 2016 Aug 30;55(34):4748-63. doi: 10.1021/acs.biochem.6b00444. Epub 2016 Aug 16.
9
Aromatic rings in chemical and biological recognition: energetics and structures.化学和生物识别中的芳环:能量学和结构。
Angew Chem Int Ed Engl. 2011 May 16;50(21):4808-42. doi: 10.1002/anie.201007560. Epub 2011 Apr 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验