IEEE Trans Image Process. 2018 Jul;27(7):3150-3163. doi: 10.1109/TIP.2018.2812081.
Image restoration methods based on convolutional neural networks have shown great success in the literature. However, since most of networks are not deep enough, there is still some room for the performance improvement. On the other hand, though some models are deep and introduce shortcuts for easy training, they ignore the importance of location and scaling of different inputs within the shortcuts. As a result, existing networks can only handle one specific image restoration application. To address such problems, we propose a novel adaptive residual network (ARN) for high-quality image restoration in this paper. Our ARN is a deep residual network, which is composed of convolutional layers, parametric rectified linear unit layers, and some adaptive shortcuts. We assign different scaling parameters to different inputs of the shortcuts, where the scaling is considered as part parameters of the ARN and trained adaptively according to different applications. Due to the special construction of ARN, it can solve many image restoration problems and have superior performance. We demonstrate its capabilities with three representative applications, including Gaussian image denoising, single image super resolution, and JPEG image deblocking. Experimental results prove that our model greatly outperforms numerous state-of-the-art restoration methods in terms of both peak signal-to-noise ratio and structure similarity index metrics, e.g., it achieves 0.2-0.3 dB gain in average compared with the second best method at a wide range of situations.
基于卷积神经网络的图像恢复方法在文献中已经取得了巨大的成功。然而,由于大多数网络不够深,因此在性能提升方面仍有一些空间。另一方面,尽管有些模型很深,并引入了快捷方式以方便训练,但它们忽略了快捷方式中不同输入的位置和比例的重要性。因此,现有的网络只能处理一个特定的图像恢复应用。为了解决这些问题,我们在本文中提出了一种新颖的自适应残差网络(ARN)用于高质量的图像恢复。我们的 ARN 是一个深度残差网络,由卷积层、参数化修正线性单元层和一些自适应快捷方式组成。我们为快捷方式的不同输入分配不同的缩放参数,其中缩放被视为 ARN 的部分参数,并根据不同的应用进行自适应训练。由于 ARN 的特殊结构,它可以解决许多图像恢复问题,并具有卓越的性能。我们通过三个具有代表性的应用程序来展示其功能,包括高斯图像去噪、单图像超分辨率和 JPEG 图像去块。实验结果证明,我们的模型在峰值信噪比和结构相似性指数度量方面大大优于许多最先进的恢复方法,例如,在各种情况下,它与第二好的方法相比平均获得了 0.2-0.3dB 的增益。