Suppr超能文献

基于聚类学习框架的二维图像自动深度提取。

Automatic Depth Extraction from 2D Images Using a Cluster-Based Learning Framework.

出版信息

IEEE Trans Image Process. 2018 Jul;27(7):3288-3299. doi: 10.1109/TIP.2018.2813093.

Abstract

There has been a significant increase in the availability of 3D players and displays in the last years. Nonetheless, the amount of 3D content has not experimented an increment of such magnitude. To alleviate this problem, many algorithms for converting images and videos from 2D to 3D have been proposed. Here, we present an automatic learning-based 2D-3D image conversion approach, based on the key hypothesis that color images with similar structure likely present a similar depth structure. The presented algorithm estimates the depth of a color query image using the prior knowledge provided by a repository of color + depth images. The algorithm clusters this database attending to their structural similarity, and then creates a representative of each color-depth image cluster that will be used as prior depth map. The selection of the appropriate prior depth map corresponding to one given color query image is accomplished by comparing the structural similarity in the color domain between the query image and the database. The comparison is based on a K-Nearest Neighbor framework that uses a learning procedure to build an adaptive combination of image feature descriptors. The best correspondences determine the cluster, and in turn the associated prior depth map. Finally, this prior estimation is enhanced through a segmentation-guided filtering that obtains the final depth map estimation. This approach has been tested using two publicly available databases, and compared with several state-of-the-art algorithms in order to prove its efficiency.

摘要

在过去的几年中,3D 播放器和显示器的可用性显著增加。尽管如此,3D 内容的数量并没有经历如此巨大的增长。为了解决这个问题,已经提出了许多将图像和视频从 2D 转换为 3D 的算法。在这里,我们提出了一种基于自动学习的 2D-3D 图像转换方法,其主要假设是具有相似结构的彩色图像可能具有相似的深度结构。该算法使用颜色+深度图像库提供的先验知识来估计彩色查询图像的深度。该算法根据其结构相似性对该数据库进行聚类,然后为每个颜色-深度图像聚类创建一个代表,用作先验深度图。通过比较查询图像和数据库之间颜色域中的结构相似性来完成选择与给定的彩色查询图像相对应的适当的先验深度图。比较基于 K-最近邻框架,该框架使用学习过程来构建图像特征描述符的自适应组合。最佳匹配确定了集群,进而确定了相关的先验深度图。最后,通过分割引导滤波对先验估计进行增强,从而获得最终的深度图估计。该方法已经使用两个公开可用的数据库进行了测试,并与几种最先进的算法进行了比较,以证明其效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验