Suppr超能文献

骨骼肌连接的分级界面的生理学和工程学。

Physiology and Engineering of the Graded Interfaces of Musculoskeletal Junctions.

机构信息

McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; email:

Translational Musculoskeletal Research Center, Col. Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pennsylvania 19104, USA.

出版信息

Annu Rev Biomed Eng. 2018 Jun 4;20:403-429. doi: 10.1146/annurev-bioeng-062117-121113. Epub 2018 Apr 11.

Abstract

The connective tissues of the musculoskeletal system can be grouped into fibrous, cartilaginous, and calcified tissues. While each tissue type has a distinct composition and function, the intersections between these tissues result in the formation of complex, composite, and graded junctions. The complexity of these interfaces is a critical aspect of their healthy function, but poses a significant challenge for their repair. In this review, we describe the organization and structure of complex musculoskeletal interfaces, identify emerging technologies for engineering such structures, and outline the requirements for assessing the complex nature of these tissues in the context of recapitulating their function through tissue engineering.

摘要

骨骼肌肉系统的结缔组织可以分为纤维组织、软骨组织和钙化组织。虽然每种组织类型都有其独特的组成和功能,但这些组织的交界处会形成复杂的、复合的和分级的连接。这些界面的复杂性是其正常功能的关键方面,但也对其修复提出了重大挑战。在这篇综述中,我们描述了复杂的骨骼肌肉界面的组织和结构,确定了用于工程此类结构的新兴技术,并概述了通过组织工程来再现其功能时评估这些组织的复杂性的要求。

相似文献

1
Physiology and Engineering of the Graded Interfaces of Musculoskeletal Junctions.
Annu Rev Biomed Eng. 2018 Jun 4;20:403-429. doi: 10.1146/annurev-bioeng-062117-121113. Epub 2018 Apr 11.
3
Tissue-engineering strategies for the tendon/ligament-to-bone insertion.
Connect Tissue Res. 2012;53(2):95-105. doi: 10.3109/03008207.2011.650804. Epub 2011 Dec 20.
4
Engineering complex orthopaedic tissues via strategic biomimicry.
Ann Biomed Eng. 2015 Mar;43(3):697-717. doi: 10.1007/s10439-014-1190-6. Epub 2014 Dec 3.
5
Hard-Soft Tissue Interface Engineering.
Adv Exp Med Biol. 2015;881:187-204. doi: 10.1007/978-3-319-22345-2_11.
6
3D-printed scaffolds with calcified layer for osteochondral tissue engineering.
J Biosci Bioeng. 2018 Sep;126(3):389-396. doi: 10.1016/j.jbiosc.2018.03.014. Epub 2018 May 16.
7
3D Bioprinting for Cartilage and Osteochondral Tissue Engineering.
Adv Healthc Mater. 2017 Nov;6(22). doi: 10.1002/adhm.201700298. Epub 2017 Aug 14.
8
Unlike bone, cartilage regeneration remains elusive.
Science. 2012 Nov 16;338(6109):917-21. doi: 10.1126/science.1222454.
9
Engineering tendon and ligament tissues: present developments towards successful clinical products.
J Tissue Eng Regen Med. 2013 Sep;7(9):673-86. doi: 10.1002/term.1459. Epub 2012 Apr 12.
10
Multilayer scaffolds in orthopaedic tissue engineering.
Knee Surg Sports Traumatol Arthrosc. 2016 Jul;24(7):2365-73. doi: 10.1007/s00167-014-3453-z. Epub 2014 Dec 3.

引用本文的文献

1
Janus hydrogel microrobots with bioactive ions for the regeneration of tendon-bone interface.
Nat Commun. 2025 Mar 4;16(1):2189. doi: 10.1038/s41467-025-57499-x.
2
Gradient scaffolds in bone-soft tissue interface engineering: Structural characteristics, fabrication techniques, and emerging trends.
J Orthop Translat. 2025 Jan 28;50:333-353. doi: 10.1016/j.jot.2024.10.015. eCollection 2025 Jan.
3
Advances focusing on the application of decellularization methods in tendon-bone healing.
J Adv Res. 2025 Jan;67:361-372. doi: 10.1016/j.jare.2024.01.020. Epub 2024 Jan 17.
5
Bi-lineage inducible and immunoregulatory electrospun fibers scaffolds for synchronous regeneration of tendon-to-bone interface.
Mater Today Bio. 2023 Jul 26;22:100749. doi: 10.1016/j.mtbio.2023.100749. eCollection 2023 Oct.
7
Scaffold-based tissue engineering strategies for soft-hard interface regeneration.
Regen Biomater. 2022 Nov 12;10:rbac091. doi: 10.1093/rb/rbac091. eCollection 2023.
8
Addition of collagen type I in agarose created a dose-dependent effect on matrix production in engineered cartilage.
Regen Biomater. 2022 Aug 11;9:rbac048. doi: 10.1093/rb/rbac048. eCollection 2022.
9
Hydrogel Development for Rotator Cuff Repair.
Front Bioeng Biotechnol. 2022 Jun 15;10:851660. doi: 10.3389/fbioe.2022.851660. eCollection 2022.

本文引用的文献

2
Total disc replacement using tissue-engineered intervertebral discs in the canine cervical spine.
PLoS One. 2017 Oct 20;12(10):e0185716. doi: 10.1371/journal.pone.0185716. eCollection 2017.
4
The microstructure and micromechanics of the tendon-bone insertion.
Nat Mater. 2017 Jun;16(6):664-670. doi: 10.1038/nmat4863. Epub 2017 Feb 27.
5
Micro-mechanical properties of the tendon-to-bone attachment.
Acta Biomater. 2017 Jul 1;56:25-35. doi: 10.1016/j.actbio.2017.01.037. Epub 2017 Jan 11.
6
Raman Spectroscopy Reveals New Insights into the Zonal Organization of Native and Tissue-Engineered Articular Cartilage.
ACS Cent Sci. 2016 Dec 28;2(12):885-895. doi: 10.1021/acscentsci.6b00222. Epub 2016 Nov 16.
9
Tunability of collagen matrix mechanical properties via multiple modes of mineralization.
Interface Focus. 2016 Feb 6;6(1):20150070. doi: 10.1098/rsfs.2015.0070.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验