Suppr超能文献

超声控制载生长因子神经酰胺体与聚己内酯支架共培养骨髓间充质干细胞仿生腱骨界面工程。

Ultrasound-Controlled Delivery of Growth Factor-Loaded Cerasomes Combined with Polycaprolactone Scaffolds Seeded with Bone Marrow Mesenchymal Stem Cells for Biomimetic Tendon-to-Bone Interface Engineering.

机构信息

Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China.

Beijing Key Laboratory of Sports Injuries, Beijing 100191, China.

出版信息

ACS Appl Mater Interfaces. 2024 Jan 10;16(1):292-304. doi: 10.1021/acsami.3c14959. Epub 2023 Dec 22.

Abstract

Rotator cuff tear (RCT) is a prevalent shoulder injury that poses challenges for achieving continuous and functional regeneration of the tendon-to-bone interface (TBI). In this study, we controlled the delivery of growth factors (GFs) from liposomal nanohybrid cerasomes by ultrasound and implanted three-dimensional printed polycaprolactone (PCL) scaffolds modified with polydopamine loaded with bone marrow mesenchymal stem cells (BMSCs) to repair tears of the infraspinatus tendon in a lapine model. Direct suturing (control, CTL) was used as a control. The PCL/BMSC/cerasome (PBC) devices are sutured with the enthesis of the infraspinatus tendon. The cerasomes and PCL scaffolds are highly stable with excellent biocompatibility. The roles of GFs BMP2, TGFβ1, and FGF2 in tissue-specific differentiation are validated. Compared with the CTL group, the PBC group had significantly greater proteoglycan deposition ( = 0.0218), collagen volume fraction ( = 0.0078), and proportions of collagen I ( = 0.0085) and collagen III ( = 0.0048). Biotin-labeled in situ hybridization revealed a high rate of survival for transplanted BMSCs. Collagen type co-staining at the TBI is consistent with multiple collagen regeneration. Our studies demonstrate the validity of biomimetic scaffolds of TBI with BMSC-seeded PCL scaffolds and GF-loaded cerasomes to enhance the treatment outcomes for RCTs.

摘要

肩袖撕裂(RCT)是一种常见的肩部损伤,它对实现肌腱-骨界面(TBI)的连续和功能再生提出了挑战。在这项研究中,我们通过超声控制脂质体纳米杂化神经酰胺体中生长因子(GFs)的释放,并植入了经聚多巴胺负载骨髓间充质干细胞(BMSCs)改性的三维打印聚己内酯(PCL)支架,以修复兔模型中冈下肌腱的撕裂。直接缝合(对照组,CTL)作为对照。PCL/BMSC/cerasome(PBC)装置与冈下肌腱的附着点缝合。神经酰胺体和 PCL 支架具有高度稳定性和良好的生物相容性。验证了 GFs BMP2、TGFβ1 和 FGF2 在组织特异性分化中的作用。与 CTL 组相比,PBC 组的糖胺聚糖沉积显著增加(=0.0218),胶原体积分数显著增加(=0.0078),I 型胶原和 III 型胶原的比例也显著增加(=0.0085 和=0.0048)。生物素标记原位杂交显示移植的 BMSCs 存活率很高。TBI 处的胶原类型共染色与多种胶原再生一致。我们的研究证明了具有 BMSC 种子的 PCL 支架和负载 GFs 的神经酰胺体的 TBI 仿生支架的有效性,可增强 RCT 的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7a/10789257/2a78c397dca5/am3c14959_0001.jpg

相似文献

2
3D-Printed PCL Scaffolds Loaded with bFGF and BMSCs Enhance Tendon-Bone Healing in Rat Rotator Cuff Tears by Immunomodulation and Osteogenesis Promotion.
ACS Biomater Sci Eng. 2025 Feb 10;11(2):1123-1139. doi: 10.1021/acsbiomaterials.4c02340. Epub 2025 Jan 24.
5
A Synthetic Graft With Multilayered Co-Electrospinning Nanoscaffolds for Bridging Massive Rotator Cuff Tear in a Rat Model.
Am J Sports Med. 2020 Jul;48(8):1826-1836. doi: 10.1177/0363546520917684. Epub 2020 May 26.
6
Stem Cell-Seeded 3D-Printed Scaffolds Combined with Self-Assembling Peptides for Bone Defect Repair.
Tissue Eng Part A. 2022 Feb;28(3-4):111-124. doi: 10.1089/ten.TEA.2021.0055. Epub 2021 Dec 30.
7
Magnetic Seeding of SPIO-BMSCs Into a Biphasic Scaffold Can Promote Tendon-Bone Healing After Rotator Cuff Repair.
Am J Sports Med. 2024 Jun;52(7):1707-1718. doi: 10.1177/03635465241247288. Epub 2024 May 4.
8
Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
J Mater Sci Mater Med. 2019 Apr 29;30(5):53. doi: 10.1007/s10856-019-6257-3.

引用本文的文献

1
Functionally graded scaffold with M2 macrophage-derived LncRNA-Encoded peptide: Mechanistic and therapeutic evaluation for rotator cuff repair.
Bioact Mater. 2025 Jun 21;52:668-686. doi: 10.1016/j.bioactmat.2025.06.032. eCollection 2025 Oct.
2
Injectable Piezoelectric Hydrogel Promotes Tendon-Bone Healing via Reshaping the Electrophysiological Microenvironment and M2 Macrophage Polarization.
ACS Appl Mater Interfaces. 2025 Apr 16;17(15):22210-22231. doi: 10.1021/acsami.4c21011. Epub 2025 Apr 3.
3
Gradient scaffolds in bone-soft tissue interface engineering: Structural characteristics, fabrication techniques, and emerging trends.
J Orthop Translat. 2025 Jan 28;50:333-353. doi: 10.1016/j.jot.2024.10.015. eCollection 2025 Jan.
4
Hierarchy Reproduction: Multiphasic Strategies for Tendon/Ligament-Bone Junction Repair.
Biomater Res. 2025 Jan 22;29:0132. doi: 10.34133/bmr.0132. eCollection 2025.
5
Exosome-loaded biomaterials for tendon/ligament repair.
Biomater Transl. 2024 Jun 28;5(2):129-143. doi: 10.12336/biomatertransl.2024.02.004. eCollection 2024.

本文引用的文献

3
Bone Tissue Engineering Scaffolds: Function of Multi-Material Hierarchically Structured Scaffolds.
Adv Healthc Mater. 2023 Apr;12(9):e2202766. doi: 10.1002/adhm.202202766. Epub 2023 Jan 22.
5
3D cell-printing of gradient multi-tissue interfaces for rotator cuff regeneration.
Bioact Mater. 2022 May 11;19:611-625. doi: 10.1016/j.bioactmat.2022.05.004. eCollection 2023 Jan.
7
The transplantation of particulated juvenile allograft cartilage and synovium for the repair of meniscal defect in a lapine model.
J Orthop Translat. 2022 Mar 4;33:72-89. doi: 10.1016/j.jot.2022.02.004. eCollection 2022 Mar.
8
BMP-2 Modified Electrospun Scaffold for Acetabular Labral Reconstruction Promotes Collagen Fiber Regeneration in a Porcine Model.
Am J Sports Med. 2022 Mar;50(3):757-768. doi: 10.1177/03635465211066948. Epub 2022 Feb 3.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验