Suppr超能文献

通过策略性仿生工程构建复杂的骨科组织。

Engineering complex orthopaedic tissues via strategic biomimicry.

作者信息

Qu Dovina, Mosher Christopher Z, Boushell Margaret K, Lu Helen H

机构信息

Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, 351 Engineering Terrace, MC 8904, New York, NY, 10027, USA.

出版信息

Ann Biomed Eng. 2015 Mar;43(3):697-717. doi: 10.1007/s10439-014-1190-6. Epub 2014 Dec 3.

Abstract

The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, wherein overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g., bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g., bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g., bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will enable integrative and functional repair of soft tissue injuries, and moreover, lay the foundation for the development of composite tissue systems and ultimately, total limb or joint regeneration.

摘要

再生工程当前面临的主要挑战在于同时形成不止一种类型的组织,并将它们功能性地组装成复杂的组织或器官系统。组织与组织之间的同步性在肌肉骨骼系统中尤为重要,在该系统中,整体器官功能是通过骨骼与韧带、肌腱或软骨等软组织的无缝整合以及肌肉与肌腱的整合来实现的。因此,与传统的单一组织系统(如骨骼、韧带)不同,用于功能性结缔组织单元(如骨 - 韧带 - 骨)再生的复合组织支架设计正在积极研究中。与之密切相关的是重新建立组织与组织界面的努力,这对于连接这些组织构建块并促进宿主整合至关重要。该领域前沿的许多研究都集中在受生物启发的分层或梯度支架设计上,其目的是重现不同组织区域固有的结构和成分不均匀性。因此,鉴于这些肌肉骨骼组织单元的复杂性,关键问题是如何在支架设计中确定最相关的参数以重现天然的结构 - 功能关系。因此,本综述的重点除了介绍复杂支架设计的最新进展外,还在于探索如何将策略性仿生应用于工程组织连接性。策略性仿生的目标是通过确定需要从自然界学习的内容并定义支架设计中必须重现的基本基质特征来避免过度工程化。本综述将讨论这种工程策略在最常见的肌肉骨骼组织单元(如骨 - 韧带 - 骨、肌肉 - 肌腱 - 骨、软骨 - 骨)再生中的应用。预计这些令人兴奋的努力将实现软组织损伤的综合和功能性修复,此外,为复合组织系统的发展奠定基础,并最终实现全肢体或关节再生。

相似文献

1
Engineering complex orthopaedic tissues via strategic biomimicry.
Ann Biomed Eng. 2015 Mar;43(3):697-717. doi: 10.1007/s10439-014-1190-6. Epub 2014 Dec 3.
2
Biomimetic strategies for engineering composite tissues.
Curr Opin Biotechnol. 2016 Aug;40:64-74. doi: 10.1016/j.copbio.2016.03.006. Epub 2016 Mar 22.
3
Biomimetic stratified scaffold design for ligament-to-bone interface tissue engineering.
Comb Chem High Throughput Screen. 2009 Jul;12(6):589-97. doi: 10.2174/138620709788681925.
4
Integrating soft and hard tissues via interface tissue engineering.
J Orthop Res. 2018 Apr;36(4):1069-1077. doi: 10.1002/jor.23810. Epub 2018 Jan 5.
5
Tissue engineering strategies for the regeneration of orthopedic interfaces.
Ann Biomed Eng. 2010 Jun;38(6):2142-54. doi: 10.1007/s10439-010-0046-y. Epub 2010 Apr 27.
6
Multilayer scaffolds in orthopaedic tissue engineering.
Knee Surg Sports Traumatol Arthrosc. 2016 Jul;24(7):2365-73. doi: 10.1007/s00167-014-3453-z. Epub 2014 Dec 3.
7
Stratified scaffold design for engineering composite tissues.
Methods. 2015 Aug;84:99-102. doi: 10.1016/j.ymeth.2015.03.029. Epub 2015 Apr 3.
9
Orthopedic interface tissue engineering for the biological fixation of soft tissue grafts.
Clin Sports Med. 2009 Jan;28(1):157-76. doi: 10.1016/j.csm.2008.08.006.
10
Hard-Soft Tissue Interface Engineering.
Adv Exp Med Biol. 2015;881:187-204. doi: 10.1007/978-3-319-22345-2_11.

引用本文的文献

1
Gradient scaffolds in bone-soft tissue interface engineering: Structural characteristics, fabrication techniques, and emerging trends.
J Orthop Translat. 2025 Jan 28;50:333-353. doi: 10.1016/j.jot.2024.10.015. eCollection 2025 Jan.
2
Automated Microfluidics-Assisted Hydrogel-Based Wet-Spinning for the Biofabrication of Biomimetic Engineered Myotendinous Junction.
Adv Healthc Mater. 2024 Dec;13(32):e2402075. doi: 10.1002/adhm.202402075. Epub 2024 Sep 23.
4
Enhancing tendon-bone integration and healing with advanced multi-layer nanofiber-reinforced 3D scaffolds for acellular tendon complexes.
Mater Today Bio. 2024 May 22;26:101099. doi: 10.1016/j.mtbio.2024.101099. eCollection 2024 Jun.
5
An update on the advances in the field of nanostructured drug delivery systems for a variety of orthopedic applications.
Drug Deliv. 2023 Dec;30(1):2241667. doi: 10.1080/10717544.2023.2241667. Epub 2023 Dec 1.
6
Bioinspired gradient scaffolds for osteochondral tissue engineering.
Exploration (Beijing). 2023 Jul 12;3(4):20210043. doi: 10.1002/EXP.20210043. eCollection 2023 Aug.
10
Additive Manufacturing: The Next Generation of Scapholunate Ligament Reconstruction.
J Wrist Surg. 2021 Jun 21;10(6):492-501. doi: 10.1055/s-0041-1729993. eCollection 2021 Dec.

本文引用的文献

1
Compositional mapping of the mature anterior cruciate ligament-to-bone insertion.
J Orthop Res. 2017 Nov;35(11):2513-2523. doi: 10.1002/jor.23539. Epub 2017 Mar 2.
4
Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis.
Trends Pharmacol Sci. 2014 May;35(5):227-36. doi: 10.1016/j.tips.2014.03.005. Epub 2014 Apr 15.
5
Nanofiber scaffolds with gradients in mineral content for spatial control of osteogenesis.
ACS Appl Mater Interfaces. 2014 Feb 26;6(4):2842-9. doi: 10.1021/am405418g. Epub 2014 Jan 24.
6
The potential of encapsulating "raw materials" in 3D osteochondral gradient scaffolds.
Biotechnol Bioeng. 2014 Apr;111(4):829-41. doi: 10.1002/bit.25145. Epub 2013 Nov 30.
9
Quantitative mapping of matrix content and distribution across the ligament-to-bone insertion.
PLoS One. 2013 Sep 3;8(9):e74349. doi: 10.1371/journal.pone.0074349. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验