Suppr超能文献

动脉静脉分化在血管生物工程中的应用

Arterial Venous Differentiation for Vascular Bioengineering.

机构信息

Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520, USA.

Departments of Anesthesiology and Biomedical Engineering, Yale University, New Haven, Connecticut 06519, USA.

出版信息

Annu Rev Biomed Eng. 2018 Jun 4;20:431-447. doi: 10.1146/annurev-bioeng-062117-121231. Epub 2018 Apr 11.

Abstract

The development processes of arteries and veins are fundamentally different, leading to distinct differences in anatomy, structure, and function as well as molecular profiles. Understanding the complex interaction between genetic and epigenetic pathways, as well as extracellular and biomechanical signals that orchestrate arterial venous differentiation, is not only critical for the understanding of vascular diseases of arteries and veins but also valuable for vascular tissue engineering strategies. Recent research has suggested that certain transcriptional factors not only control arterial venous differentiation during development but also play a critical role in adult vessel function and disease processes. This review summarizes the signaling pathways and critical transcription factors that are important for arterial versus venous specification. We focus on those signals that have a direct relation to the structure and function of arteries and veins, and have implications for vascular disease processes and tissue engineering applications.

摘要

动脉和静脉的发育过程从根本上是不同的,导致它们在解剖结构、功能和分子特征上有明显的差异。理解遗传和表观遗传途径以及细胞外和生物力学信号之间的复杂相互作用,对于理解动脉和静脉血管疾病以及血管组织工程策略都是至关重要的。最近的研究表明,某些转录因子不仅在发育过程中控制动脉静脉的分化,而且在成年血管的功能和疾病过程中也起着关键作用。本综述总结了对动脉与静脉特化具有重要作用的信号通路和关键转录因子。我们重点关注那些与动脉和静脉的结构和功能直接相关的信号,这些信号对血管疾病过程和组织工程应用具有重要意义。

相似文献

1
Arterial Venous Differentiation for Vascular Bioengineering.
Annu Rev Biomed Eng. 2018 Jun 4;20:431-447. doi: 10.1146/annurev-bioeng-062117-121231. Epub 2018 Apr 11.
2
Vegf signaling promotes vascular endothelial differentiation by modulating etv2 expression.
Dev Biol. 2017 Apr 15;424(2):147-161. doi: 10.1016/j.ydbio.2017.03.005. Epub 2017 Mar 7.
3
Specification of arterial, venous, and lymphatic endothelial cells during embryonic development.
Histol Histopathol. 2010 May;25(5):637-46. doi: 10.14670/HH-25.637.
4
Arterial and venous progenitors of the major axial vessels originate at distinct locations.
Dev Cell. 2013 Apr 29;25(2):196-206. doi: 10.1016/j.devcel.2013.03.017.
5
Differentiation of arterial and venous endothelial cells and vascular morphogenesis.
Endothelium. 2006 Mar-Apr;13(2):137-45. doi: 10.1080/10623320600698078.
6
Signaling pathways in the specification of arteries and veins.
Arterioscler Thromb Vasc Biol. 2014 Nov;34(11):2372-7. doi: 10.1161/ATVBAHA.114.303218. Epub 2014 Aug 28.
7
Neuropilin-1 Mediated Arterial Differentiation of Murine Pluripotent Stem Cells.
Stem Cells Dev. 2018 Apr 1;27(7):441-455. doi: 10.1089/scd.2017.0240. Epub 2018 Mar 13.
9
Multivalent biomaterial platform to control the distinct arterial venous differentiation of pluripotent stem cells.
Biomaterials. 2018 Dec;185:1-12. doi: 10.1016/j.biomaterials.2018.09.002. Epub 2018 Sep 3.

引用本文的文献

2
Changes in vascular identity during vascular remodeling.
JVS Vasc Sci. 2025 Feb 25;6:100282. doi: 10.1016/j.jvssci.2025.100282. eCollection 2025.
4
Bioengineered human arterial equivalent and its applications from vascular graft to disease modeling.
iScience. 2024 Oct 19;27(11):111215. doi: 10.1016/j.isci.2024.111215. eCollection 2024 Nov 15.
5
CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis.
Int J Mol Sci. 2024 Apr 25;25(9):4679. doi: 10.3390/ijms25094679.
6
Continuous Extrusion Forming Technology of Magnesium Alloy Thin-Walled Tubules.
Materials (Basel). 2023 Aug 24;16(17):5803. doi: 10.3390/ma16175803.
7
Insights gained from single-cell RNA analysis of murine endothelial cells in aging hearts.
Heliyon. 2023 Jul 22;9(8):e18324. doi: 10.1016/j.heliyon.2023.e18324. eCollection 2023 Aug.
10
YULINK regulates vascular formation in zebrafish and HUVECs.
Biol Res. 2023 Feb 27;56(1):7. doi: 10.1186/s40659-023-00415-8.

本文引用的文献

2
Functional characterization of human pluripotent stem cell-derived arterial endothelial cells.
Proc Natl Acad Sci U S A. 2017 Jul 25;114(30):E6072-E6078. doi: 10.1073/pnas.1702295114. Epub 2017 Jul 10.
3
SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development.
Development. 2017 Jul 15;144(14):2629-2639. doi: 10.1242/dev.146241. Epub 2017 Jun 15.
4
Characterization of arteriovenous identity in the developing neonate mouse retina.
Gene Expr Patterns. 2017 Jan;23-24:22-31. doi: 10.1016/j.gep.2017.01.002. Epub 2017 Feb 3.
6
Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells.
Nat Protoc. 2017 Jan;12(1):15-31. doi: 10.1038/nprot.2016.153. Epub 2016 Dec 1.
7
Delta-Like Ligand 4-Notch Signaling in Macrophage Activation.
Arterioscler Thromb Vasc Biol. 2016 Oct;36(10):2038-47. doi: 10.1161/ATVBAHA.116.306926. Epub 2016 Aug 25.
8
Sympathetic Innervation Promotes Arterial Fate by Enhancing Endothelial ERK Activity.
Circ Res. 2016 Aug 19;119(5):607-20. doi: 10.1161/CIRCRESAHA.116.308473. Epub 2016 Jun 27.
10
Eph-B4 mediates vein graft adaptation by regulation of endothelial nitric oxide synthase.
J Vasc Surg. 2017 Jan;65(1):179-189. doi: 10.1016/j.jvs.2015.11.041. Epub 2016 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验