Truong Johnson, Hansen Matthew, Szychowski Brian, Xie Tian, Daniel Marie-Christine, Hahm Jong-In
Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA.
Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
Nanomaterials (Basel). 2018 Apr 7;8(4):222. doi: 10.3390/nano8040222.
We demonstrate a straightforward and effective method to synthesize vertically oriented, Cu-doped ZnO nanorods (NRs) using a novel multipurpose platform of copper silicide nanoblocks (Cu₃Si NBs) preformed laterally in well-defined directions on Si. The use of the surface-organized Cu₃Si NBs for ZnO NR growth successfully results in densely assembled Cu-doped ZnO NRs on each NB platform, whose overall structures resemble thick bristles on a brush head. We show that Cu₃Si NBs can uniquely serve as a catalyst for ZnO NRs, a local dopant source of Cu, and a prepatterned guide to aid the local assembly of the NRs on the growth substrate. We also ascertain the crystalline structures, optical properties, and spectroscopic signatures of the Cu-doped ZnO NRs produced on the NBs, both at each module of NRs/NB and at their ensemble level. Subsequently, we determine their augmented properties relative to the pristine form of undoped ZnO NRs and the source material of Cu₃Si NBs. We provide spatially correlated structural and optical data for individual modules of Cu-doped ZnO NRs assembled on a Cu₃Si NB by resolving them along the different positions on the NB. Ensemble-averaged versus individual behaviors of Cu-doped ZnO NRs on Cu₃Si NBs are then compared. We further discuss the potential impact of such ZnO-derived NRs on their relatively unexplored biological and biomedical applications. Our efforts will be particularly useful when exploiting each integrated module of self-aligned, Cu-doped ZnO NRs on a NB as a discretely addressable, active element in solid-state sensors and miniaturized luminescent bioprobes.
我们展示了一种简单有效的方法,可利用在硅上沿明确方向横向预先形成的新型多功能硅化铜纳米块(Cu₃Si NB)平台来合成垂直取向的铜掺杂氧化锌纳米棒(NRs)。使用表面组织化的Cu₃Si NB进行氧化锌NR生长,成功地在每个NB平台上形成了密集组装的铜掺杂氧化锌NRs,其整体结构类似于刷头的粗刷毛。我们表明,Cu₃Si NB可以独特地充当氧化锌NRs的催化剂、铜的局部掺杂源以及有助于NRs在生长衬底上进行局部组装的预图案化导向。我们还确定了在NB上产生的铜掺杂氧化锌NRs的晶体结构、光学性质和光谱特征,包括在每个NRs/NB模块以及它们的整体水平上。随后,我们确定了它们相对于未掺杂氧化锌NRs的原始形式和Cu₃Si NB源材料的增强性能。通过沿着NB上的不同位置解析组装在Cu₃Si NB上的铜掺杂氧化锌NRs的各个模块,我们提供了空间相关的结构和光学数据。然后比较了铜掺杂氧化锌NRs在Cu₃Si NB上的整体平均行为与个体行为。我们进一步讨论了这种氧化锌衍生的NRs对其相对未被探索的生物和生物医学应用的潜在影响。当将NB上自对准的铜掺杂氧化锌NRs的每个集成模块用作固态传感器和小型化发光生物探针中的可离散寻址的活性元件时,我们的工作将特别有用。