Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA.
Nanoscale. 2017 Jun 22;9(24):8164-8175. doi: 10.1039/c7nr02201h.
The superior optical properties of zinc oxide nanorods (ZnO NRs) have continued to promote their broad use in photonic, photoelectric, light detecting, and biosensing applications. One particularly important property pertinent to biodetection is fluorescence intensification on nanorod ends (FINE), a phenomenon in which a highly spatially localized and strongly intensified fluorescence signal with its extended photostability at the NR ends is seen from the emission profiles of fluorophore-coupled biomolecules on ZnO NRs. Therefore, understanding key parameters affecting the FINE phenomenon and the degree of FINE (DoF) is critical for their applications in biosensors. In this study, we describe in detail the outcomes of polarization-resolved measurements by systematically considering the polarization effects on FINE and DoF as a function of NR tilt angle and position along the NR. Specifically, we elucidate the exact roles of the different states of light polarization in FINE and quantitatively determine the explicit contributions arising from distinctive polarization states to the DoF. We confirm that the presence of the FINE phenomenon is ubiquitous from the fluorophore-coupled ZnO NR systems, regardless of the polarization setting. We subsequently show that DoF is significantly affected by the light-matter interaction geometry. We reveal the specific polarization conditions that contribute dominantly to the FINE effect. The highest DoF from a NR and the greatest NR end intensity can be achieved when both the excitation and collection polarization states are perpendicular to the NR main axis. Insights from this study provide valuable design principles for selecting the polarization state and light-matter interaction geometry to attain maximum FINE as well as DoF on ZnO NRs. The precise understanding of polarization-derived consequences on FINE and DoF manifested differently as a function of the position on individual NRs can also be important for warranting accurate interpretation and quantification of the position-dependent, fluorophore-emitted signals on single ZnO NRs. Hence, our findings from this study can be extremely beneficial in fluorescence-based sensing and detection settings utilizing polarization.
氧化锌纳米棒(ZnO NRs)具有卓越的光学性能,这促使其在光子学、光电学、光检测和生物传感等应用领域得到了广泛的应用。在生物检测中,一个特别重要的特性是纳米棒末端的荧光增强(FINE)现象,即在 ZnO NRs 上耦合荧光分子的发射谱中,可以看到在纳米棒末端具有高度空间局域性和强烈增强的荧光信号,并且其具有扩展的光稳定性。因此,了解影响 FINE 现象的关键参数以及 FINE 程度(DoF)对于它们在生物传感器中的应用至关重要。在这项研究中,我们详细描述了偏振分辨测量的结果,通过系统地考虑偏振效应对 FINE 和 DoF 的影响,作为 NR 倾斜角度和位置的函数。具体来说,我们阐明了不同偏振态在 FINE 中的具体作用,并定量确定了来自不同偏振态的明确贡献对 DoF 的影响。我们证实,无论偏振设置如何,FINE 现象在荧光团耦合的 ZnO NR 系统中普遍存在。随后,我们表明 DoF 受到光物质相互作用几何形状的显著影响。我们揭示了对 FINE 效应贡献最大的具体偏振条件。当激发和收集偏振态都垂直于 NR 主轴时,NR 上的 DoF 最大,NR 末端强度最大。这项研究的结果为选择偏振态和光物质相互作用几何形状以获得 ZnO NRs 上的最大 FINE 和 DoF 提供了有价值的设计原则。精确理解偏振对 FINE 和 DoF 的影响,这些影响在单个 NR 上的位置不同,这对于保证对单个 ZnO NR 上位置相关的荧光发射信号的准确解释和量化也很重要。因此,本研究的发现对于利用偏振的荧光传感和检测环境非常有益。