Suppr超能文献

一种从局部晚期非小细胞肺癌患者的常规医疗数据中提取结果的方法。

A methodology to extract outcomes from routine healthcare data for patients with locally advanced non-small cell lung cancer.

作者信息

Wong Swee-Ling, Ricketts Kate, Royle Gary, Williams Matt, Mendes Ruheena

机构信息

Department of Clinical Oncology, University College London Hospital, 235 Euston Road, London, NW1 2BU, UK.

Division of Surgery and Interventional Science, University College London, London, UK.

出版信息

BMC Health Serv Res. 2018 Apr 11;18(1):278. doi: 10.1186/s12913-018-3029-6.

Abstract

BACKGROUND

Outcomes for patients in UK with locally advanced non-small cell lung cancer (LA NSCLC) are amongst the worst in Europe. Assessing outcomes is important for analysing the effectiveness of current practice. However, data quality is inconsistent and regular large scale analysis is challenging. This project investigates the use of routine healthcare datasets to determine progression free survival (PFS) and overall survival (OS) of patients treated with primary radical radiotherapy for LA NSCLC.

METHODS

All LA NSCLC patients treated with primary radical radiotherapy in a 2 year period were identified and paired manual and routine data generated for an initial pilot study. Manual data was extracted information from hospital records and considered the gold standard. Key time points were date of diagnosis, recurrence, death or last clinical encounter. Routine data was collected from various data sources including, Hospital Episode Statistics, Personal Demographic Service, chemotherapy data, and radiotherapy datasets. Relevant event dates were defined by proxy time points and refined using backdating and time interval optimization. Dataset correlations were then tested on key clinical outcome indicators to establish if routine data could be used as a reliable proxy measure for manual data.

RESULTS

Forty-three patients were identified for the pilot study. The manual data showed a median age of 67 years (range 46- 89 years) and all patients had stage IIIA/B disease. Using the manual data, the median PFS was 10.78 months (range 1.58-37.49 months) and median OS was 16.36 months (range 2.69-37.49 months). Based on routine data, using proxy measures, the estimated median PFS was 10.68 months (range 1.61-31.93 months) and estimated median OS was 15.38 months (range 2.14-33.71 months). Overall, the routine data underestimated the PFS and OS of the manual data but there was good correlation with a Pearson correlation coefficient of 0.94 for PFS and 0.97 for OS.

CONCLUSIONS

This is a novel approach to use routine datasets to determine outcome indicators in patients with LA NSCLC that will be a surrogate to analysing manual data. The ability to enable efficient and large scale analysis of current lung cancer strategies has a huge potential impact on the healthcare system.

摘要

背景

在英国,局部晚期非小细胞肺癌(LA NSCLC)患者的治疗结果在欧洲是最差的之一。评估治疗结果对于分析当前治疗方法的有效性很重要。然而,数据质量参差不齐,定期进行大规模分析具有挑战性。本项目研究利用常规医疗数据集来确定接受LA NSCLC根治性放疗患者的无进展生存期(PFS)和总生存期(OS)。

方法

确定了在两年内接受根治性放疗的所有LA NSCLC患者,并为初步试点研究生成了配对的手动数据和常规数据。手动数据从医院记录中提取信息,并被视为金标准。关键时间点为诊断日期、复发日期、死亡日期或最后一次临床会诊日期。常规数据从包括医院事件统计、个人人口统计服务、化疗数据和放疗数据集等各种数据源收集。相关事件日期通过代理时间点定义,并使用回溯和时间间隔优化进行细化。然后在关键临床结果指标上测试数据集相关性,以确定常规数据是否可以用作手动数据的可靠替代指标。

结果

确定了43名患者进行试点研究。手动数据显示中位年龄为67岁(范围46 - 89岁),所有患者均患有IIIA/B期疾病。使用手动数据,中位PFS为10.78个月(范围1.58 - 37.49个月),中位OS为16.36个月(范围2.69 - 37.49个月)。基于常规数据,使用代理指标,估计中位PFS为10.68个月(范围1.61 - 31.93个月),估计中位OS为15.38个月(范围2.14 - 33.71个月)。总体而言,常规数据低估了手动数据的PFS和OS,但相关性良好,PFS的Pearson相关系数为0.94,OS为0.97。

结论

这是一种利用常规数据集来确定LA NSCLC患者结局指标的新方法,将成为分析手动数据的替代方法。能够对当前肺癌治疗策略进行高效大规模分析的能力对医疗系统具有巨大的潜在影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65eb/5896093/6f87e533e737/12913_2018_3029_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验