Suppr超能文献

综合征性耳聋突变 G12R 损害 Cx26 半通道的快速和慢速门控。

The syndromic deafness mutation G12R impairs fast and slow gating in Cx26 hemichannels.

机构信息

Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.

Laboratory of Molecular Physiology and Biophysics, Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile.

出版信息

J Gen Physiol. 2018 May 7;150(5):697-711. doi: 10.1085/jgp.201711782. Epub 2018 Apr 11.

Abstract

Mutations in connexin 26 (Cx26) hemichannels can lead to syndromic deafness that affects the cochlea and skin. These mutations lead to gain-of-function hemichannel phenotypes by unknown molecular mechanisms. In this study, we investigate the biophysical properties of the syndromic mutant Cx26G12R (G12R). Unlike wild-type Cx26, G12R macroscopic hemichannel currents do not saturate upon depolarization, and deactivation is faster during hyperpolarization, suggesting that these channels have impaired fast and slow gating. Single G12R hemichannels show a large increase in open probability, and transitions to the subconductance state are rare and short-lived, demonstrating an inoperative fast gating mechanism. Molecular dynamics simulations indicate that G12R causes a displacement of the N terminus toward the cytoplasm, favoring an interaction between R12 in the N terminus and R99 in the intracellular loop. Disruption of this interaction recovers the fast and slow voltage-dependent gating mechanisms. These results suggest that the mechanisms of fast and slow gating in connexin hemichannels are coupled and provide a molecular mechanism for the gain-of-function phenotype displayed by the syndromic G12R mutation.

摘要

连接蛋白 26(Cx26)半通道的突变可导致影响耳蜗和皮肤的综合征性耳聋。这些突变通过未知的分子机制导致功能获得性半通道表型。在这项研究中,我们研究了综合征突变型 Cx26G12R(G12R)的生物物理特性。与野生型 Cx26 不同,G12R 宏观半通道电流在去极化时不会饱和,在超极化时失活更快,表明这些通道的快速和慢速门控受损。单个 G12R 半通道的开放概率显着增加,并且亚电导状态的转变很少且短暂,表明快速门控机制不起作用。分子动力学模拟表明,G12R 导致 N 末端向细胞质的位移,有利于 N 末端的 R12 与细胞内环中的 R99 之间的相互作用。破坏这种相互作用可恢复快速和慢速电压依赖性门控机制。这些结果表明,连接蛋白半通道的快速和慢速门控机制是耦合的,并为综合征性 G12R 突变显示的功能获得表型提供了分子机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/491e/5940247/6696316adb45/JGP_201711782_Fig1.jpg

相似文献

1
The syndromic deafness mutation G12R impairs fast and slow gating in Cx26 hemichannels.
J Gen Physiol. 2018 May 7;150(5):697-711. doi: 10.1085/jgp.201711782. Epub 2018 Apr 11.
4
Altered inhibition of Cx26 hemichannels by pH and Zn2+ in the A40V mutation associated with keratitis-ichthyosis-deafness syndrome.
J Biol Chem. 2014 Aug 1;289(31):21519-32. doi: 10.1074/jbc.M114.578757. Epub 2014 Jun 17.
7
The connexin26 human mutation N14K disrupts cytosolic intersubunit interactions and promotes channel opening.
J Gen Physiol. 2019 Mar 4;151(3):328-341. doi: 10.1085/jgp.201812219. Epub 2018 Dec 7.
8
Aberrant hemichannel properties of Cx26 mutations causing skin disease and deafness.
Am J Physiol Cell Physiol. 2007 Jul;293(1):C337-45. doi: 10.1152/ajpcell.00626.2006. Epub 2007 Apr 11.
10
The human Cx26-D50A and Cx26-A88V mutations causing keratitis-ichthyosis-deafness syndrome display increased hemichannel activity.
Am J Physiol Cell Physiol. 2013 Jun 15;304(12):C1150-8. doi: 10.1152/ajpcell.00374.2012. Epub 2013 Feb 27.

引用本文的文献

1
Large-pore connexin hemichannels function like molecule transporters independent of ion conduction.
Proc Natl Acad Sci U S A. 2024 Aug 13;121(33):e2403903121. doi: 10.1073/pnas.2403903121. Epub 2024 Aug 8.
2
Calcium Regulation of Connexin Hemichannels.
Int J Mol Sci. 2024 Jun 15;25(12):6594. doi: 10.3390/ijms25126594.
3
Connexin Gap Junction Channels and Hemichannels: Insights from High-Resolution Structures.
Biology (Basel). 2024 Apr 26;13(5):298. doi: 10.3390/biology13050298.
6
Simulation-predicted and -explained inheritance model of pathogenicity confirmed by transgenic mice models.
Comput Struct Biotechnol J. 2023 Nov 18;21:5698-5711. doi: 10.1016/j.csbj.2023.11.026. eCollection 2023.
8
Expression of KID syndromic mutation Cx26S17F produces hyperactive hemichannels in supporting cells of the organ of Corti.
Front Cell Dev Biol. 2023 Jan 9;10:1071202. doi: 10.3389/fcell.2022.1071202. eCollection 2022.
9
Conformational changes and CO-induced channel gating in connexin26.
Structure. 2022 May 5;30(5):697-706.e4. doi: 10.1016/j.str.2022.02.010. Epub 2022 Mar 10.
10
Cellular mechanisms of connexin-based inherited diseases.
Trends Cell Biol. 2022 Jan;32(1):58-69. doi: 10.1016/j.tcb.2021.07.007. Epub 2021 Aug 21.

本文引用的文献

1
Permeant-specific gating of connexin 30 hemichannels.
J Biol Chem. 2017 Dec 8;292(49):19999-20009. doi: 10.1074/jbc.M117.805986. Epub 2017 Oct 5.
2
Atomic structure of the innexin-6 gap junction channel determined by cryo-EM.
Nat Commun. 2016 Dec 1;7:13681. doi: 10.1038/ncomms13681.
3
Mechanism of gating by calcium in connexin hemichannels.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):E7986-E7995. doi: 10.1073/pnas.1609378113. Epub 2016 Nov 21.
4
Structural studies of N-terminal mutants of Connexin 26 and Connexin 32 using (1)H NMR spectroscopy.
Arch Biochem Biophys. 2016 Oct 15;608:8-19. doi: 10.1016/j.abb.2016.06.019. Epub 2016 Jul 1.
6
Charged Residues at the First Transmembrane Region Contribute to the Voltage Dependence of the Slow Gate of Connexins.
J Biol Chem. 2016 Jul 22;291(30):15740-52. doi: 10.1074/jbc.M115.709402. Epub 2016 May 3.
8
An electrostatic mechanism for Ca(2+)-mediated regulation of gap junction channels.
Nat Commun. 2016 Jan 12;7:8770. doi: 10.1038/ncomms9770.
9
PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions.
J Chem Theory Comput. 2011 Feb 8;7(2):525-37. doi: 10.1021/ct100578z. Epub 2011 Jan 6.
10
An empirical energy function for structural assessment of protein transmembrane domains.
Biochimie. 2015 Aug;115:155-61. doi: 10.1016/j.biochi.2015.05.018. Epub 2015 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验