Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
Laboratory of Molecular Physiology and Biophysics, Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile.
J Gen Physiol. 2018 May 7;150(5):697-711. doi: 10.1085/jgp.201711782. Epub 2018 Apr 11.
Mutations in connexin 26 (Cx26) hemichannels can lead to syndromic deafness that affects the cochlea and skin. These mutations lead to gain-of-function hemichannel phenotypes by unknown molecular mechanisms. In this study, we investigate the biophysical properties of the syndromic mutant Cx26G12R (G12R). Unlike wild-type Cx26, G12R macroscopic hemichannel currents do not saturate upon depolarization, and deactivation is faster during hyperpolarization, suggesting that these channels have impaired fast and slow gating. Single G12R hemichannels show a large increase in open probability, and transitions to the subconductance state are rare and short-lived, demonstrating an inoperative fast gating mechanism. Molecular dynamics simulations indicate that G12R causes a displacement of the N terminus toward the cytoplasm, favoring an interaction between R12 in the N terminus and R99 in the intracellular loop. Disruption of this interaction recovers the fast and slow voltage-dependent gating mechanisms. These results suggest that the mechanisms of fast and slow gating in connexin hemichannels are coupled and provide a molecular mechanism for the gain-of-function phenotype displayed by the syndromic G12R mutation.
连接蛋白 26(Cx26)半通道的突变可导致影响耳蜗和皮肤的综合征性耳聋。这些突变通过未知的分子机制导致功能获得性半通道表型。在这项研究中,我们研究了综合征突变型 Cx26G12R(G12R)的生物物理特性。与野生型 Cx26 不同,G12R 宏观半通道电流在去极化时不会饱和,在超极化时失活更快,表明这些通道的快速和慢速门控受损。单个 G12R 半通道的开放概率显着增加,并且亚电导状态的转变很少且短暂,表明快速门控机制不起作用。分子动力学模拟表明,G12R 导致 N 末端向细胞质的位移,有利于 N 末端的 R12 与细胞内环中的 R99 之间的相互作用。破坏这种相互作用可恢复快速和慢速电压依赖性门控机制。这些结果表明,连接蛋白半通道的快速和慢速门控机制是耦合的,并为综合征性 G12R 突变显示的功能获得表型提供了分子机制。