Suppr超能文献

使用核磁共振氢谱对连接蛋白26和连接蛋白32的N端突变体进行结构研究。

Structural studies of N-terminal mutants of Connexin 26 and Connexin 32 using (1)H NMR spectroscopy.

作者信息

Batir Yuksel, Bargiello Thaddeus A, Dowd Terry L

机构信息

Department of Chemistry, Brooklyn College, Brooklyn, NY 11210, United States.

Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States.

出版信息

Arch Biochem Biophys. 2016 Oct 15;608:8-19. doi: 10.1016/j.abb.2016.06.019. Epub 2016 Jul 1.

Abstract

Alterations in gap junctions underlie the etiologies of syndromic deafness (KID) and Charcot-Marie Tooth disease (CMTX). Functional gap junctions are composed of connexin molecules with N-termini containing a flexible turn around G12, inserting the N-termini into the channel pore allowing voltage gating. The loss of this turn correlates with loss of Connexin 32 (Cx32) function by impaired trafficking to the cell membrane. Using (1)H NMR we show the N-terminus of a syndromic deafness mutation Cx26G12R, producing "leaky channels", contains a turn around G12 which is less structured and more flexible than wild-type. In contrast, the N-terminal structure of the same mutation in Cx32 chimera, Cx32*43E1G12R shows a larger constricted turn and no membrane current expression but forms membrane inserted hemichannels. Their function was rescued by formation of heteromeric channels with wild type subunits. We suggest the inflexible Cx32G12R N-terminus blocks ion conduction in homomeric channels and this channel block is relieved by incorporation of wild type subunits. In contrast, the increased open probability of Cx26G12R hemichannels is likely due to the addition of positive charge in the channel pore changing pore electrostatics and impairing hemichannel regulation by Ca(2+). These results provide mechanistic information on aberrant channel activity observed in disease.

摘要

缝隙连接的改变是综合征性耳聋(KID)和夏科-马里-图斯病(CMTX)病因的基础。功能性缝隙连接由连接蛋白分子组成,其N端在G12周围有一个灵活的转折,将N端插入通道孔中以实现电压门控。这种转折的缺失与连接蛋白32(Cx32)因转运至细胞膜受损而导致的功能丧失相关。使用核磁共振氢谱(1H NMR),我们发现综合征性耳聋突变体Cx26G12R的N端产生“渗漏通道”,在G12周围有一个转折,其结构比野生型更松散、更灵活。相比之下,Cx32嵌合体中相同突变体Cx32*43E1G12R的N端结构显示出更大的收缩转折,且无膜电流表达,但形成了插入膜中的半通道。通过与野生型亚基形成异聚通道,其功能得以恢复。我们认为,僵硬的Cx32G12R N端会阻断同聚通道中的离子传导,而野生型亚基的掺入可缓解这种通道阻断。相比之下,Cx26G12R半通道开放概率的增加可能是由于通道孔中增加了正电荷,改变了孔的静电特性,并损害了Ca(2+)对半通道的调节作用。这些结果为疾病中观察到的异常通道活性提供了机制信息。

相似文献

1
Structural studies of N-terminal mutants of Connexin 26 and Connexin 32 using (1)H NMR spectroscopy.
Arch Biochem Biophys. 2016 Oct 15;608:8-19. doi: 10.1016/j.abb.2016.06.019. Epub 2016 Jul 1.
2
Emerging issues of connexin channels: biophysics fills the gap.
Q Rev Biophys. 2001 Aug;34(3):325-472. doi: 10.1017/s0033583501003705.
3
Voltage opens unopposed gap junction hemichannels formed by a connexin 32 mutant associated with X-linked Charcot-Marie-Tooth disease.
Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3980-4. doi: 10.1073/pnas.261713499. Epub 2002 Mar 12.
4
Structure of the amino terminus of a gap junction protein.
Arch Biochem Biophys. 2000 Sep 15;381(2):181-90. doi: 10.1006/abbi.2000.1989.
6
Structural studies of N-terminal mutants of connexin 32 using (1)H NMR spectroscopy.
Arch Biochem Biophys. 2012 Oct 1;526(1):1-8. doi: 10.1016/j.abb.2012.05.027. Epub 2012 Jun 14.

引用本文的文献

1
Connexin Gap Junction Channels and Hemichannels: Insights from High-Resolution Structures.
Biology (Basel). 2024 Apr 26;13(5):298. doi: 10.3390/biology13050298.
4
Gap junctions mediate discrete regulatory steps during fly spermatogenesis.
PLoS Genet. 2022 Sep 29;18(9):e1010417. doi: 10.1371/journal.pgen.1010417. eCollection 2022 Sep.
6
The Complex and Critical Role of Glycine 12 (G12) in Beta-Connexins of Human Skin.
Int J Mol Sci. 2021 Mar 5;22(5):2615. doi: 10.3390/ijms22052615.
7
Role of ROS/RNS in Preeclampsia: Are Connexins the Missing Piece?
Int J Mol Sci. 2020 Jun 30;21(13):4698. doi: 10.3390/ijms21134698.
8
The syndromic deafness mutation G12R impairs fast and slow gating in Cx26 hemichannels.
J Gen Physiol. 2018 May 7;150(5):697-711. doi: 10.1085/jgp.201711782. Epub 2018 Apr 11.
9
Gating of Connexin Channels by transjunctional-voltage: Conformations and models of open and closed states.
Biochim Biophys Acta Biomembr. 2018 Jan;1860(1):22-39. doi: 10.1016/j.bbamem.2017.04.028. Epub 2017 May 2.
10
NMR and structural data for Connexin 32 and Connexin 26 N-terminal peptides.
Data Brief. 2016 Sep 12;9:470-476. doi: 10.1016/j.dib.2016.08.044. eCollection 2016 Dec.

本文引用的文献

1
An electrostatic mechanism for Ca(2+)-mediated regulation of gap junction channels.
Nat Commun. 2016 Jan 12;7:8770. doi: 10.1038/ncomms9770.
2
Connexin hemichannels influence genetically determined inflammatory and hyperproliferative skin diseases.
Pharmacol Res. 2015 Sep;99:337-43. doi: 10.1016/j.phrs.2015.07.015. Epub 2015 Jul 23.
4
Aberrant Cx26 hemichannels and keratitis-ichthyosis-deafness syndrome: insights into syndromic hearing loss.
Front Cell Neurosci. 2014 Oct 27;8:354. doi: 10.3389/fncel.2014.00354. eCollection 2014.
5
GJB1-associated X-linked Charcot-Marie-Tooth disease, a disorder affecting the central and peripheral nervous systems.
Cell Tissue Res. 2015 Jun;360(3):659-73. doi: 10.1007/s00441-014-2014-6. Epub 2014 Nov 5.
6
Opening of pannexin- and connexin-based channels increases the excitability of nodose ganglion sensory neurons.
Front Cell Neurosci. 2014 Jun 20;8:158. doi: 10.3389/fncel.2014.00158. eCollection 2014.
7
Altered inhibition of Cx26 hemichannels by pH and Zn2+ in the A40V mutation associated with keratitis-ichthyosis-deafness syndrome.
J Biol Chem. 2014 Aug 1;289(31):21519-32. doi: 10.1074/jbc.M114.578757. Epub 2014 Jun 17.
8
Quality control: quality control at the plasma membrane: one mechanism does not fit all.
J Cell Biol. 2014 Apr 14;205(1):11-20. doi: 10.1083/jcb.201310113.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验