Shao Xingfeng, Tisdall M Dylan, Wang Danny Jj, van der Kouwe Andre Jan Willem
Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib. 2017 Apr;25:0680.
We propose a prospective motion correction approach for background suppressed (BS) segmented 3D GRASE pCASL using volumetric EPI-based navigators (vNavs), which causes minimal contrast change and no extra time. vNavs reduced motion artifacts effectively and increased temporal signal-to-noise ratio (t-SNR). Principle component analysis (PCA) is able to further reduce residual motion artifacts and restore the details of gyral structure in perfusion weighted images..
我们提出了一种用于背景抑制(BS)分段3D GRASE pCASL的前瞻性运动校正方法,该方法使用基于容积EPI的导航器(vNavs),可使对比度变化最小且无需额外时间。vNavs有效减少了运动伪影并提高了时间信噪比(t-SNR)。主成分分析(PCA)能够进一步减少残余运动伪影并恢复灌注加权图像中脑回结构的细节。