Suppr超能文献

使用简单神经网络描绘分布式经济选择的一些原则。

Using a Simple Neural Network to Delineate Some Principles of Distributed Economic Choice.

作者信息

Balasubramani Pragathi P, Moreno-Bote Rubén, Hayden Benjamin Y

机构信息

Brain and Cognitive Sciences, Center for Visual Science, Center for the Origins of Cognition, University of Rochester, Rochester, NY, United States.

Department of Information and Communications Technologies, Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain.

出版信息

Front Comput Neurosci. 2018 Mar 28;12:22. doi: 10.3389/fncom.2018.00022. eCollection 2018.

Abstract

The brain uses a mixture of distributed and modular organization to perform computations and generate appropriate actions. While the principles under which the brain might perform computations using modular systems have been more amenable to modeling, the principles by which the brain might make choices using distributed principles have not been explored. Our goal in this perspective is to delineate some of those distributed principles using a neural network method and use its results as a lens through which to reconsider some previously published neurophysiological data. To allow for direct comparison with our own data, we trained the neural network to perform binary risky choices. We find that value correlates are ubiquitous and are always accompanied by non-value information, including spatial information (i.e., no pure value signals). Evaluation, comparison, and selection were not distinct processes; indeed, value signals even in the earliest stages contributed directly, albeit weakly, to action selection. There was no place, other than at the level of action selection, at which dimensions were fully integrated. No units were specialized for specific offers; rather, all units encoded the values of both offers in an anti-correlated format, thus contributing to comparison. Individual network layers corresponded to stages in a continuous rotation from input to output space rather than to functionally distinct modules. While our network is likely to not be a direct reflection of brain processes, we propose that these principles should serve as hypotheses to be tested and evaluated for future studies.

摘要

大脑利用分布式和模块化组织的混合方式来执行计算并产生适当的行为。虽然大脑使用模块化系统执行计算的原理更适合建模,但大脑使用分布式原理进行选择的原理尚未得到探索。在这篇观点文章中,我们的目标是使用神经网络方法来描绘其中一些分布式原理,并将其结果作为一个视角,用以重新审视一些先前发表的神经生理学数据。为了能够与我们自己的数据进行直接比较,我们训练神经网络来执行二元风险选择。我们发现价值相关性无处不在,并且总是伴随着非价值信息,包括空间信息(即不存在纯价值信号)。评估、比较和选择并非是截然不同的过程;事实上,即使在最早阶段的价值信号也直接(尽管很微弱)对行动选择有所贡献。除了在行动选择层面外,不存在其他维度完全整合的地方。没有单元专门用于特定的选项;相反,所有单元以反相关的形式编码两个选项的价值,从而有助于比较。各个网络层对应于从输入空间到输出空间的连续转换阶段,而不是功能上不同的模块。虽然我们的网络可能并非大脑过程的直接反映,但我们提出这些原理应作为假设,供未来研究进行检验和评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cfd/5882864/1c870ee75903/fncom-12-00022-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验