Suppr超能文献

神经网络中执行多项认知任务的任务表示。

Task representations in neural networks trained to perform many cognitive tasks.

机构信息

Center for Neural Science, New York University, New York, NY, USA.

Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA.

出版信息

Nat Neurosci. 2019 Feb;22(2):297-306. doi: 10.1038/s41593-018-0310-2. Epub 2019 Jan 14.

Abstract

The brain has the ability to flexibly perform many tasks, but the underlying mechanism cannot be elucidated in traditional experimental and modeling studies designed for one task at a time. Here, we trained single network models to perform 20 cognitive tasks that depend on working memory, decision making, categorization, and inhibitory control. We found that after training, recurrent units can develop into clusters that are functionally specialized for different cognitive processes, and we introduce a simple yet effective measure to quantify relationships between single-unit neural representations of tasks. Learning often gives rise to compositionality of task representations, a critical feature for cognitive flexibility, whereby one task can be performed by recombining instructions for other tasks. Finally, networks developed mixed task selectivity similar to recorded prefrontal neurons after learning multiple tasks sequentially with a continual-learning technique. This work provides a computational platform to investigate neural representations of many cognitive tasks.

摘要

大脑具有灵活执行多项任务的能力,但在传统的实验和建模研究中,一次只能设计一个任务,无法阐明其潜在机制。在这里,我们训练单个网络模型来执行 20 项认知任务,这些任务依赖于工作记忆、决策制定、分类和抑制控制。我们发现,经过训练后,递归单元可以发展成功能专门化的不同认知过程的集群,并且我们引入了一种简单而有效的方法来量化任务的单单元神经表示之间的关系。学习通常会导致任务表示的组合性,这是认知灵活性的关键特征,即通过重新组合其他任务的指令可以执行一项任务。最后,在使用持续学习技术连续学习多个任务后,网络发展出类似于记录的前额叶神经元的混合任务选择性。这项工作为研究许多认知任务的神经表示提供了一个计算平台。

相似文献

2
Geometry of neural computation unifies working memory and planning.神经计算的几何结构统一了工作记忆和规划。
Proc Natl Acad Sci U S A. 2022 Sep 13;119(37):e2115610119. doi: 10.1073/pnas.2115610119. Epub 2022 Sep 6.
8
Working Memory and Decision-Making in a Frontoparietal Circuit Model.前额顶叶回路模型中的工作记忆与决策制定
J Neurosci. 2017 Dec 13;37(50):12167-12186. doi: 10.1523/JNEUROSCI.0343-17.2017. Epub 2017 Nov 7.
10
Emergence of Nonlinear Mixed Selectivity in Prefrontal Cortex after Training.前额叶皮层在训练后出现非线性混合选择性。
J Neurosci. 2021 Sep 1;41(35):7420-7434. doi: 10.1523/JNEUROSCI.2814-20.2021. Epub 2021 Jul 22.

引用本文的文献

1
Non-negative connectivity causes bow-tie architecture in neural circuits.非负连接性导致神经回路中的蝴蝶结结构。
Front Neural Circuits. 2025 Aug 18;19:1574877. doi: 10.3389/fncir.2025.1574877. eCollection 2025.
4
Initial learning in the brain: From rules to action.大脑中的初始学习:从规则到行动。
Imaging Neurosci (Camb). 2024 Aug 20;2. doi: 10.1162/imag_a_00274. eCollection 2024.
7
A neural manifold view of the brain.大脑的神经流形视角。
Nat Neurosci. 2025 Jul 28. doi: 10.1038/s41593-025-02031-z.

本文引用的文献

4
Overcoming catastrophic forgetting in neural networks.克服神经网络中的灾难性遗忘。
Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3521-3526. doi: 10.1073/pnas.1611835114. Epub 2017 Mar 14.
6
Computational principles of synaptic memory consolidation.突触记忆巩固的计算原理。
Nat Neurosci. 2016 Dec;19(12):1697-1706. doi: 10.1038/nn.4401. Epub 2016 Oct 3.
7
Neuronal Mechanisms of Visual Categorization: An Abstract View on Decision Making.视觉分类的神经机制:决策的抽象观点。
Annu Rev Neurosci. 2016 Jul 8;39:129-47. doi: 10.1146/annurev-neuro-071714-033919. Epub 2016 Apr 8.
8
Recurrent Network Models of Sequence Generation and Memory.序列生成与记忆的循环网络模型。
Neuron. 2016 Apr 6;90(1):128-42. doi: 10.1016/j.neuron.2016.02.009. Epub 2016 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验