Department of Mathematics and Statistics, University of Maryland Baltimore County, 433 Mathematics/Psychology Building, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
Department of Biostatistics and Medical Informatics, University of Wisconsin, 4720A Medical Sciences Center, 1300 University Avenue, Madison, WI, 53706, USA.
Bull Math Biol. 2019 Aug;81(8):2849-2872. doi: 10.1007/s11538-018-0427-1. Epub 2018 Apr 11.
We study the dynamics of flagellar growth in eukaryotes where intraflagellar transporters (IFT) play a crucial role. First we investigate a stochastic version of the original balance point model where a constant number of IFT particles move up and down the flagellum. The detailed model is a discrete event vector-valued Markov process occurring in continuous time. First the detailed stochastic model is compared and contrasted with a simple scalar ordinary differential equation (ODE) model of flagellar growth. Numerical simulations reveal that the steady-state mean value of the stochastic model is well approximated by the ODE model. Then we derive a scalar stochastic differential equation (SDE) as a first approximation and obtain a "small noise" approximation showing flagellar length to be Gaussian with mean and variance governed by simple ODEs. The accuracy of the small noise model is compared favorably with the numerical simulation results of the detailed model. Secondly, we derive a revised SDE for flagellar length following the revised balance point model proposed in 2009 in which IFT particles move in trains instead of in isolation. Small noise approximation of the revised SDE yields the same approximate Gaussian distribution for the flagellar length as the SDE corresponding to the original balance point model.
我们研究了真核生物鞭毛生长的动力学,其中鞭毛内转运蛋白(IFT)起着至关重要的作用。首先,我们研究了原始平衡点模型的随机版本,其中恒定数量的 IFT 颗粒在鞭毛上下移动。详细模型是一个离散事件向量值马尔可夫过程,发生在连续时间中。首先,将详细的随机模型与鞭毛生长的简单标量常微分方程(ODE)模型进行了比较和对比。数值模拟表明,随机模型的稳态平均值很好地被 ODE 模型逼近。然后,我们推导出一个标量随机微分方程(SDE)作为一阶近似,并得到一个“小噪声”近似,表明鞭毛长度呈高斯分布,均值和方差由简单的 ODE 控制。小噪声模型的准确性与详细模型的数值模拟结果进行了比较。其次,我们根据 2009 年提出的修正平衡点模型,为鞭毛长度推导了一个修正的 SDE,其中 IFT 颗粒成组而不是单独移动。修正 SDE 的小噪声逼近产生了与原始平衡点模型对应的 SDE 相同的近似高斯分布的鞭毛长度。