Suppr超能文献

真核鞭毛生长的随机动力学。

Stochastic Dynamics of Eukaryotic Flagellar Growth.

机构信息

Department of Mathematics and Statistics, University of Maryland Baltimore County, 433 Mathematics/Psychology Building, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.

Department of Biostatistics and Medical Informatics, University of Wisconsin, 4720A Medical Sciences Center, 1300 University Avenue, Madison, WI, 53706, USA.

出版信息

Bull Math Biol. 2019 Aug;81(8):2849-2872. doi: 10.1007/s11538-018-0427-1. Epub 2018 Apr 11.

Abstract

We study the dynamics of flagellar growth in eukaryotes where intraflagellar transporters (IFT) play a crucial role. First we investigate a stochastic version of the original balance point model where a constant number of IFT particles move up and down the flagellum. The detailed model is a discrete event vector-valued Markov process occurring in continuous time. First the detailed stochastic model is compared and contrasted with a simple scalar ordinary differential equation (ODE) model of flagellar growth. Numerical simulations reveal that the steady-state mean value of the stochastic model is well approximated by the ODE model. Then we derive a scalar stochastic differential equation (SDE) as a first approximation and obtain a "small noise" approximation showing flagellar length to be Gaussian with mean and variance governed by simple ODEs. The accuracy of the small noise model is compared favorably with the numerical simulation results of the detailed model. Secondly, we derive a revised SDE for flagellar length following the revised balance point model proposed in 2009 in which IFT particles move in trains instead of in isolation. Small noise approximation of the revised SDE yields the same approximate Gaussian distribution for the flagellar length as the SDE corresponding to the original balance point model.

摘要

我们研究了真核生物鞭毛生长的动力学,其中鞭毛内转运蛋白(IFT)起着至关重要的作用。首先,我们研究了原始平衡点模型的随机版本,其中恒定数量的 IFT 颗粒在鞭毛上下移动。详细模型是一个离散事件向量值马尔可夫过程,发生在连续时间中。首先,将详细的随机模型与鞭毛生长的简单标量常微分方程(ODE)模型进行了比较和对比。数值模拟表明,随机模型的稳态平均值很好地被 ODE 模型逼近。然后,我们推导出一个标量随机微分方程(SDE)作为一阶近似,并得到一个“小噪声”近似,表明鞭毛长度呈高斯分布,均值和方差由简单的 ODE 控制。小噪声模型的准确性与详细模型的数值模拟结果进行了比较。其次,我们根据 2009 年提出的修正平衡点模型,为鞭毛长度推导了一个修正的 SDE,其中 IFT 颗粒成组而不是单独移动。修正 SDE 的小噪声逼近产生了与原始平衡点模型对应的 SDE 相同的近似高斯分布的鞭毛长度。

相似文献

1
Stochastic Dynamics of Eukaryotic Flagellar Growth.
Bull Math Biol. 2019 Aug;81(8):2849-2872. doi: 10.1007/s11538-018-0427-1. Epub 2018 Apr 11.
2
Stochastic model of intraflagellar transport.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jun;73(6 Pt 1):061916. doi: 10.1103/PhysRevE.73.061916. Epub 2006 Jun 23.
3
Intraflagellar transport (IFT) during assembly and disassembly of Chlamydomonas flagella.
J Cell Biol. 2005 Aug 15;170(4):649-59. doi: 10.1083/jcb.200412021.
4
Adding noise to Markov cohort state-transition model in decision modeling and cost-effectiveness analysis.
Stat Med. 2020 May 15;39(10):1529-1540. doi: 10.1002/sim.8494. Epub 2020 Feb 4.
6
Sensitivity Analysis for Multiscale Stochastic Reaction Networks Using Hybrid Approximations.
Bull Math Biol. 2019 Aug;81(8):3121-3158. doi: 10.1007/s11538-018-0521-4. Epub 2018 Oct 9.
7
Modeling ion channel dynamics through reflected stochastic differential equations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 1):051907. doi: 10.1103/PhysRevE.85.051907. Epub 2012 May 15.
8
Inference for reaction networks using the linear noise approximation.
Biometrics. 2014 Jun;70(2):457-66. doi: 10.1111/biom.12152. Epub 2014 Jan 27.
9
On real-valued SDE and nonnegative-valued SDE population models with demographic variability.
J Math Biol. 2020 Aug;81(2):487-515. doi: 10.1007/s00285-020-01516-8. Epub 2020 Jul 16.
10
Dealing with several flagella in the same cell.
Cell Microbiol. 2020 Mar;22(3):e13162. doi: 10.1111/cmi.13162. Epub 2020 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验