Suppr超能文献

在决策建模和成本效益分析中向马尔可夫队列状态转移模型添加噪声。

Adding noise to Markov cohort state-transition model in decision modeling and cost-effectiveness analysis.

作者信息

Iskandar Rowan

机构信息

Center of Competence for Public Management, University of Bern, Bern, Switzerland.

Department of Health Services, Policy, and Practice, Brown University, Providence, Rhode Island.

出版信息

Stat Med. 2020 May 15;39(10):1529-1540. doi: 10.1002/sim.8494. Epub 2020 Feb 4.

Abstract

Following its introduction over 30 years ago, the Markov cohort state-transition model has been used extensively to model population trajectories over time in health decision modeling and cost-effectiveness analysis studies. We recently showed that a cohort model represents the average of a continuous-time stochastic process on a multidimensional integer lattice governed by a master equation, which represents the time-evolution of the probability function of an integer-valued random vector. By leveraging this theoretical connection, this study introduces an alternative modeling method using a stochastic differential equation (SDE) approach, which captures not only the mean behavior but also the variance of the population process. We show the derivation of an SDE model from first principles, describe an algorithm to construct an SDE and solve the SDE via simulation for use in practice, and demonstrate the two applications of an SDE in detail. The first example demonstrates that the population trajectories, and their mean and variance, from the SDE and other commonly used methods in decision modeling match. The second example shows that users can readily apply the SDE method in their existing works without the need for additional inputs beyond those required for constructing a conventional cohort model. In addition, the second example demonstrates that the SDE model is superior to a microsimulation model in terms of computational speed. In summary, an SDE model provides an alternative modeling framework which includes information on variance, can accommodate for time-varying parameters, and is computationally less expensive than a microsimulation for a typical cohort modeling problem.

摘要

马尔可夫队列状态转换模型在30多年前被引入后,已广泛应用于健康决策建模和成本效益分析研究中,用于对随时间变化的人群轨迹进行建模。我们最近表明,队列模型代表了由主方程控制的多维整数格上连续时间随机过程的平均值,主方程表示整数值随机向量概率函数的时间演化。通过利用这种理论联系,本研究引入了一种使用随机微分方程(SDE)方法的替代建模方法,该方法不仅可以捕捉人群过程的平均行为,还可以捕捉其方差。我们从第一原理出发推导了SDE模型,描述了一种构建SDE并通过模拟求解SDE以供实际使用的算法,并详细演示了SDE的两个应用。第一个例子表明,SDE和决策建模中其他常用方法得出的人群轨迹及其均值和方差是匹配的。第二个例子表明,用户可以在现有工作中轻松应用SDE方法,除了构建传统队列模型所需的输入外,无需额外的输入。此外,第二个例子表明,在计算速度方面,SDE模型优于微观模拟模型。总之,SDE模型提供了一个替代建模框架,该框架包含方差信息,可以适应时变参数,并且对于典型的队列建模问题,其计算成本低于微观模拟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验