Ahn Hyo-Jin, Goswami Anandarup, Riboni Francesca, Kment Stepan, Naldoni Alberto, Mohajernia Shiva, Zboril Radek, Schmuki Patrik
Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic.
Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany.
ChemSusChem. 2018 Jun 11;11(11):1873-1879. doi: 10.1002/cssc.201800256. Epub 2018 Apr 26.
Over the past years, α-Fe O (hematite) has re-emerged as a promising photoanode material in photoelectrochemical (PEC) water splitting. In spite of considerable success in obtaining relatively high solar conversion efficiency, the main drawbacks hindering practical application of hematite are its intrinsically hampered charge transport and sluggish oxygen evolution reaction (OER) kinetics on the photoelectrode surface. In the present work, we report a strategy that synergistically addresses both of these critical limitations. Our approach is based on three key features that are applied simultaneously: i) a careful nanostructuring of the hematite photoanode in the form of nanorods, ii) doping of hematite by Sn ions using a controlled gradient, and iii) surface decoration of hematite by a new class of layered double hydroxide (LDH) OER co-catalysts based on Zn-Co LDH. All three interconnected forms of functionalization result in an extraordinary cathodic shift of the photocurrent onset potential by more than 300 mV and a PEC performance that reaches a photocurrent density of 2.00 mA cm at 1.50 V vs. the reversible hydrogen electrode.
在过去几年中,α-Fe₂O₃(赤铁矿)作为光催化电化学(PEC)水分解中一种有前景的光阳极材料再度兴起。尽管在获得相对较高的太阳能转换效率方面取得了相当大的成功,但阻碍赤铁矿实际应用的主要缺点是其固有的电荷传输受阻以及光电极表面上缓慢的析氧反应(OER)动力学。在本工作中,我们报道了一种协同解决这两个关键限制的策略。我们的方法基于同时应用的三个关键特征:i)以纳米棒形式对赤铁矿光阳极进行精细的纳米结构化;ii)使用受控梯度通过Sn离子对赤铁矿进行掺杂;iii)用一类新型的基于Zn-Co层状双氢氧化物(LDH)的OER助催化剂对赤铁矿进行表面修饰。所有这三种相互关联的功能化形式导致光电流起始电位出现超过300 mV的显著阴极偏移以及PEC性能,在相对于可逆氢电极1.50 V时达到2.00 mA cm⁻²的光电流密度。