Suppr超能文献

酪氨酸酶催化2-氨基酚的氧化及芳香胺的邻位羟基化反应。

Catalytic oxidation of 2-aminophenols and ortho hydroxylation of aromatic amines by tyrosinase.

作者信息

Toussaint O, Lerch K

机构信息

Biochemisches Institut, Universität Zürich-Irchel, Switzerland.

出版信息

Biochemistry. 1987 Dec 29;26(26):8567-71. doi: 10.1021/bi00400a011.

Abstract

The usual substrates of tyrosinase, a copper-containing monooxygenase (EC 1.14.18.1), are monophenols and o-diphenols which are both converted to o-quinones. In this paper, we studied the reaction of this enzyme with two new classes of substrates: aromatic amines and o-aminophenols, structural analogues of monophenols and o-diphenols, respectively. They undergo the same catalytic reactions (ortho hydroxylation and oxidation), as documented by product analysis and kinetic studies. In the presence of tyrosinase, arylamines and o-aminophenols are converted to o-quinone imines, which are isolated as quinone anils or phenoxazones. As an example, in the presence of tyrosinase, 2-amino-3-hydroxybenzoic acid (an o-aminophenol) is converted to cinnabarinic acid, a well-known phenoxazone, while p-aminotoluene (an aromatic amine) gives rise to the formation of 5-amino-2-methyl-1,4-benzoquinone 1-(4-methylanil). Kinetic studies using an oxygen electrode show that arylamines and the corresponding monophenols exhibit similar Michaelis constants (Km = 0.11-0.49 mM). In contrast, the reaction rates observed for aromatic amines are relatively slow (Kcat = 1-3 min-1) as compared to monophenols (1320-6960 min-1). The enzymatic conversion of arylamines by tyrosinase is different from the typical ones: N-oxidation and ring hydroxylation without further oxidation. This difference originates from the regiospecific hydroxylation (ortho position) and subsequent oxidation of the intermediate o-aminophenol to the corresponding o-quinone imine. Finally, the well-known monooxygenase activity of tyrosinase was also confirmed for the aromatic amine p-aminotoluene, with 18O2.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

酪氨酸酶是一种含铜单加氧酶(EC 1.14.18.1),其常见底物是单酚和邻二酚,二者均可转化为邻醌。在本文中,我们研究了该酶与两类新底物的反应:芳香胺和邻氨基酚,它们分别是单酚和邻二酚的结构类似物。产物分析和动力学研究表明,它们会发生相同的催化反应(邻位羟基化和氧化)。在酪氨酸酶存在的情况下,芳胺和邻氨基酚会转化为邻醌亚胺,可作为醌缩苯胺或吩恶嗪分离出来。例如,在酪氨酸酶存在的情况下,2-氨基-3-羟基苯甲酸(一种邻氨基酚)会转化为朱砂酸,一种著名的吩恶嗪,而对氨基甲苯(一种芳香胺)会生成5-氨基-2-甲基-1,4-苯醌1-(4-甲基苯胺)。使用氧电极进行的动力学研究表明,芳胺和相应的单酚表现出相似的米氏常数(Km = 0.11 - 0.49 mM)。相比之下,与单酚(1320 - 6960 min-1)相比,观察到的芳香胺反应速率相对较慢(Kcat = 1 - 3 min-1)。酪氨酸酶对芳胺的酶促转化与典型转化不同:N-氧化和环羟基化且无进一步氧化。这种差异源于区域特异性羟基化(邻位)以及随后将中间体邻氨基酚氧化为相应的邻醌亚胺。最后,对于芳香胺对氨基甲苯,酪氨酸酶著名的单加氧酶活性也通过18O2得到了证实。(摘要截选至250字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验