Suppr超能文献

使用受限自然语言查询来解决时间事件依赖关系的临床信息系统的复杂分析。

Complex analyses on clinical information systems using restricted natural language querying to resolve time-event dependencies.

机构信息

School of Computer Engineering, Faculty of Engineering, The University of Zanjan, Zanjan, Iran.

Health Language Analytics, Sydney, NSW, Australia.

出版信息

J Biomed Inform. 2018 Jun;82:13-30. doi: 10.1016/j.jbi.2018.04.004. Epub 2018 Apr 9.

Abstract

PURPOSE

This paper reports on a generic framework to provide clinicians with the ability to conduct complex analyses on elaborate research topics using cascaded queries to resolve internal time-event dependencies in the research questions, as an extension to the proposed Clinical Data Analytics Language (CliniDAL).

METHODS

A cascaded query model is proposed to resolve internal time-event dependencies in the queries which can have up to five levels of criteria starting with a query to define subjects to be admitted into a study, followed by a query to define the time span of the experiment. Three more cascaded queries can be required to define control groups, control variables and output variables which all together simulate a real scientific experiment. According to the complexity of the research questions, the cascaded query model has the flexibility of merging some lower level queries for simple research questions or adding a nested query to each level to compose more complex queries. Three different scenarios (one of them contains two studies) are described and used for evaluation of the proposed solution.

RESULTS

CliniDAL's complex analyses solution enables answering complex queries with time-event dependencies at most in a few hours which manually would take many days.

CONCLUSION

An evaluation of results of the research studies based on the comparison between CliniDAL and SQL solutions reveals high usability and efficiency of CliniDAL's solution.

摘要

目的

本文报告了一个通用框架,为临床医生提供了使用级联查询来解决研究问题中内部时间事件依赖关系的能力,从而对提出的临床数据分析语言(CliniDAL)进行扩展,以进行复杂的分析。

方法

提出了一个级联查询模型,用于解决查询中的内部时间事件依赖关系,查询可以有多达五个级别的标准,从定义要纳入研究的受试者的查询开始,然后是定义实验时间跨度的查询。还可以需要另外三个级联查询来定义对照组、控制变量和输出变量,所有这些一起模拟真实的科学实验。根据研究问题的复杂性,级联查询模型具有灵活性,可以合并一些简单研究问题的较低级别查询,或者在每个级别添加嵌套查询以组成更复杂的查询。描述并使用了三个不同的场景(其中一个包含两个研究)来评估所提出的解决方案。

结果

CliniDAL 的复杂分析解决方案能够在数小时内回答具有时间事件依赖关系的复杂查询,而手动操作则需要数天时间。

结论

通过比较 CliniDAL 和 SQL 解决方案对研究的评估结果表明,CliniDAL 解决方案具有高度的可用性和效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验