Suppr超能文献

混合显式-隐式盐溶液中 DNA 分子的开边界分子动力学。

Open-Boundary Molecular Dynamics of a DNA Molecule in a Hybrid Explicit/Implicit Salt Solution.

机构信息

Computational Science & Engineering Laboratory, ETH Zurich, Zurich, Switzerland.

Laboratory for Molecular Modeling, National Institute of Chemistry, Ljubljana, Slovenia.

出版信息

Biophys J. 2018 May 22;114(10):2352-2362. doi: 10.1016/j.bpj.2018.02.042. Epub 2018 Apr 9.

Abstract

The composition and electrolyte concentration of the aqueous bathing environment have important consequences for many biological processes and can profoundly affect the behavior of biomolecules. Nevertheless, because of computational limitations, many molecular simulations of biophysical systems can be performed only at specific ionic conditions: either at nominally zero salt concentration, i.e., including only counterions enforcing the system's electroneutrality, or at excessive salt concentrations. Here, we introduce an efficient molecular dynamics simulation approach for an atomistic DNA molecule at realistic physiological ionic conditions. The simulations are performed by employing the open-boundary molecular dynamics method that allows for simulation of open systems that can exchange mass and linear momentum with the environment. In our open-boundary molecular dynamics approach, the computational burden is drastically alleviated by embedding the DNA molecule in a mixed explicit/implicit salt-bathing solution. In the explicit domain, the water molecules and ions are both overtly present in the system, whereas in the implicit water domain, only the ions are explicitly present and the water is described as a continuous dielectric medium. Water molecules are inserted and deleted into/from the system in the intermediate buffer domain that acts as a water reservoir to the explicit domain, with both water molecules and ions free to enter or leave the explicit domain. Our approach is general and allows for efficient molecular simulations of biomolecules solvated in bathing salt solutions at any ionic strength condition.

摘要

水相环境的组成和电解质浓度对许多生物过程都有重要影响,并且可以深刻地影响生物分子的行为。然而,由于计算限制,许多生物物理系统的分子模拟只能在特定的离子条件下进行:要么在名义上的零盐浓度下进行,即只包括反离子以强制系统的电中性,要么在过高的盐浓度下进行。在这里,我们引入了一种有效的分子动力学模拟方法,用于在现实生理离子条件下对原子 DNA 分子进行模拟。通过采用开放边界分子动力学方法来进行模拟,该方法允许对可以与环境交换质量和线性动量的开放系统进行模拟。在我们的开放边界分子动力学方法中,通过将 DNA 分子嵌入混合显式/隐式盐浴溶液中,可以大大减轻计算负担。在显式区域中,水分子和离子都在系统中明显存在,而在隐式水区中,只有离子显式存在,并且水被描述为连续的介电介质。水分子在中间缓冲区中被插入或删除到/从系统中,该缓冲区充当显式区域的储水池,水分子和离子都可以自由进入或离开显式区域。我们的方法是通用的,可以在任何离子强度条件下有效地模拟溶解在盐浴溶液中的生物分子。

相似文献

6
Adaptive resolution simulation of a DNA molecule in salt solution.盐溶液中DNA分子的自适应分辨率模拟
J Chem Theory Comput. 2015 Oct 13;11(10):5035-44. doi: 10.1021/acs.jctc.5b00596. Epub 2015 Sep 17.
10
Brownian dynamics of double-stranded DNA in periodic systems with discrete salt.双链DNA在具有离散盐的周期性系统中的布朗动力学
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 1):031924. doi: 10.1103/PhysRevE.77.031924. Epub 2008 Mar 31.

引用本文的文献

5
6
From adaptive resolution to molecular dynamics of open systems.从自适应分辨率到开放系统的分子动力学
Eur Phys J B. 2021;94(9):189. doi: 10.1140/epjb/s10051-021-00193-w. Epub 2021 Sep 23.

本文引用的文献

10
Adaptive resolution simulations of biomolecular systems.生物分子系统的自适应分辨率模拟。
Eur Biophys J. 2017 Dec;46(8):821-835. doi: 10.1007/s00249-017-1248-0. Epub 2017 Sep 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验