Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA.
Nat Commun. 2018 Apr 12;9(1):1427. doi: 10.1038/s41467-018-03888-4.
Systems simultaneously exhibiting superconductivity and spin-orbit coupling are predicted to provide a route toward topological superconductivity and unconventional electron pairing, driving significant contemporary interest in these materials. Monolayer transition-metal dichalcogenide (TMD) superconductors in particular lack inversion symmetry, yielding an antisymmetric form of spin-orbit coupling that admits both spin-singlet and spin-triplet components of the superconducting wavefunction. Here, we present an experimental and theoretical study of two intrinsic TMD superconductors with large spin-orbit coupling in the atomic layer limit, metallic 2H-TaS and 2H-NbSe. We investigate the superconducting properties as the material is reduced to monolayer thickness and show that high-field measurements point to the largest upper critical field thus reported for an intrinsic TMD superconductor. In few-layer samples, we find the enhancement of the upper critical field is sustained by the dominance of spin-orbit coupling over weak interlayer coupling, providing additional candidate systems for supporting unconventional superconducting states in two dimensions.
系统同时表现出超导性和自旋轨道耦合,预计将为拓扑超导和非常规电子配对提供途径,这引起了人们对这些材料的浓厚兴趣。特别地,单层过渡金属二卤代物(TMD)超导体缺乏反转对称性,产生了一种反对称形式的自旋轨道耦合,它允许超导波函数的自旋单态和自旋三重态分量。在这里,我们对具有原子层极限的大自旋轨道耦合的两个本征 TMD 超导体进行了实验和理论研究,它们分别是金属 2H-TaS 和 2H-NbSe。我们研究了材料减薄至单层厚度时的超导性质,并表明高场测量指出了迄今为止报道的最大本征 TMD 超导体的上临界场。在少层样品中,我们发现上临界场的增强是由自旋轨道耦合对弱层间耦合的主导作用维持的,这为支持二维非常规超导态提供了更多的候选体系。