Suppr超能文献

基于无监督学习的咀嚼评估:使用基于惯性传感器的系统

Mastication Evaluation With Unsupervised Learning: Using an Inertial Sensor-Based System.

作者信息

Lucena Caroline Vieira, Lacerda Marcelo, Caldas Rafael, De Lima Neto Fernando Buarque, Rativa Diego

机构信息

Polytechnic School of PernambucoUniversity of PernambucoRecife-Pernambuco50100-010Brazil.

出版信息

IEEE J Transl Eng Health Med. 2018 Apr 2;6:2100310. doi: 10.1109/JTEHM.2018.2797985. eCollection 2018.

Abstract

There is a direct relationship between the prevalence of musculoskeletal disorders of the temporomandibular joint and orofacial disorders. A well-elaborated analysis of the jaw movements provides relevant information for healthcare professionals to conclude their diagnosis. Different approaches have been explored to track jaw movements such that the mastication analysis is getting less subjective; however, all methods are still highly subjective, and the quality of the assessments depends much on the experience of the health professional. In this paper, an accurate and non-invasive method based on a commercial low-cost inertial sensor (MPU6050) to measure jaw movements is proposed. The jaw-movement feature values are compared to the obtained with clinical analysis, showing no statistically significant difference between both methods. Moreover, We propose to use unsupervised paradigm approaches to cluster mastication patterns of healthy subjects and simulated patients with facial trauma. Two techniques were used in this paper to instantiate the method: Kohonen's Self-Organizing Maps and K-Means Clustering. Both algorithms have excellent performances to process jaw-movements data, showing encouraging results and potential to bring a full assessment of the masticatory function. The proposed method can be applied in real-time providing relevant dynamic information for health-care professionals.

摘要

颞下颌关节肌肉骨骼疾病的患病率与口面部疾病之间存在直接关系。对下颌运动进行详尽的分析可为医护人员的诊断提供相关信息。人们探索了不同的方法来追踪下颌运动,以使咀嚼分析的主观性降低;然而,所有方法仍然具有很高的主观性,评估质量很大程度上取决于医护人员的经验。本文提出了一种基于商用低成本惯性传感器(MPU6050)来测量下颌运动的准确且非侵入性的方法。将下颌运动特征值与临床分析获得的值进行比较,结果表明两种方法之间无统计学显著差异。此外,我们建议使用无监督范式方法对健康受试者和模拟面部创伤患者的咀嚼模式进行聚类。本文使用了两种技术来实例化该方法:科霍宁自组织映射和K均值聚类。两种算法在处理下颌运动数据方面都具有出色的性能,显示出令人鼓舞的结果以及对咀嚼功能进行全面评估的潜力。所提出的方法可以实时应用,为医护人员提供相关的动态信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbc7/5886753/14f147377413/rativ2abc-2797985.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验