Suppr超能文献

使用机器学习回归方法从人体测量数据估计身高和体重

Height and Weight Estimation From Anthropometric Measurements Using Machine Learning Regressions.

作者信息

Rativa Diego, Fernandes Bruno J T, Roque Alexandre

机构信息

Polytechnique School of PernambucoUniversity of PernambucoRecife-Pernambuco50720-001Brazil.

出版信息

IEEE J Transl Eng Health Med. 2018 Mar 29;6:4400209. doi: 10.1109/JTEHM.2018.2797983. eCollection 2018.

Abstract

Height and weight are measurements explored to tracking nutritional diseases, energy expenditure, clinical conditions, drug dosages, and infusion rates. Many patients are not ambulant or may be unable to communicate, and a sequence of these factors may not allow accurate estimation or measurements; in those cases, it can be estimated approximately by anthropometric means. Different groups have proposed different linear or non-linear equations which coefficients are obtained by using single or multiple linear regressions. In this paper, we present a complete study of the application of different learning models to estimate height and weight from anthropometric measurements: support vector regression, Gaussian process, and artificial neural networks. The predicted values are significantly more accurate than that obtained with conventional linear regressions. In all the cases, the predictions are non-sensitive to ethnicity, and to gender, if more than two anthropometric parameters are analyzed. The learning model analysis creates new opportunities for anthropometric applications in industry, textile technology, security, and health care.

摘要

身高和体重是用于追踪营养疾病、能量消耗、临床状况、药物剂量和输液速率的测量指标。许多患者无法行走或可能无法交流,而一系列这些因素可能导致无法进行准确的估计或测量;在这些情况下,可以通过人体测量方法进行大致估计。不同的研究团队提出了不同的线性或非线性方程,其系数通过单线性回归或多线性回归获得。在本文中,我们全面研究了不同学习模型在根据人体测量数据估计身高和体重方面的应用:支持向量回归、高斯过程和人工神经网络。预测值比传统线性回归得到的结果显著更准确。在所有情况下,如果分析了两个以上的人体测量参数,预测对种族和性别均不敏感。学习模型分析为人体测量在工业、纺织技术、安全和医疗保健领域的应用创造了新机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a89/5886752/4d55317eda7b/rativ1-2797983.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验