Suppr超能文献

用于机器学习的高斯过程

Gaussian processes for machine learning.

作者信息

Seeger Matthias

机构信息

Department of EECS, University of California at Berkeley, 485 Soda Hall, Berkeley, CA 94720-1776, USA.

出版信息

Int J Neural Syst. 2004 Apr;14(2):69-106. doi: 10.1142/S0129065704001899.

Abstract

Gaussian processes (GPs) are natural generalisations of multivariate Gaussian random variables to infinite (countably or continuous) index sets. GPs have been applied in a large number of fields to a diverse range of ends, and very many deep theoretical analyses of various properties are available. This paper gives an introduction to Gaussian processes on a fairly elementary level with special emphasis on characteristics relevant in machine learning. It draws explicit connections to branches such as spline smoothing models and support vector machines in which similar ideas have been investigated. Gaussian process models are routinely used to solve hard machine learning problems. They are attractive because of their flexible non-parametric nature and computational simplicity. Treated within a Bayesian framework, very powerful statistical methods can be implemented which offer valid estimates of uncertainties in our predictions and generic model selection procedures cast as nonlinear optimization problems. Their main drawback of heavy computational scaling has recently been alleviated by the introduction of generic sparse approximations.13,78,31 The mathematical literature on GPs is large and often uses deep concepts which are not required to fully understand most machine learning applications. In this tutorial paper, we aim to present characteristics of GPs relevant to machine learning and to show up precise connections to other "kernel machines" popular in the community. Our focus is on a simple presentation, but references to more detailed sources are provided.

摘要

高斯过程(GPs)是多元高斯随机变量到无限(可数或连续)索引集的自然推广。高斯过程已被应用于大量领域,以实现各种各样的目的,并且有许多关于其各种性质的深入理论分析。本文在相当基础的层面上介绍高斯过程,特别强调与机器学习相关的特征。它明确地与诸如样条平滑模型和支持向量机等分支建立联系,在这些分支中已经研究了类似的思想。高斯过程模型经常用于解决困难的机器学习问题。它们具有吸引力,因为其具有灵活的非参数性质和计算简单性。在贝叶斯框架内进行处理,可以实现非常强大的统计方法,这些方法能够对我们预测中的不确定性提供有效的估计,并将通用的模型选择过程转化为非线性优化问题。最近,通过引入通用的稀疏近似,它们计算量过大的主要缺点得到了缓解。关于高斯过程的数学文献很多,并且经常使用一些深奥的概念,而大多数机器学习应用并不需要完全理解这些概念。在本教程论文中,我们旨在介绍与机器学习相关的高斯过程的特征,并展示其与该领域中其他流行的“核机器”的确切联系。我们的重点是进行简单的阐述,但也会提供指向更详细资料来源的参考文献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验