Institut d'Electronique, de Microélectronique et de Nanotechnologie, CNRS, The University of Lille , Villeneuve d'Ascq 59652 , France.
Department of Chemical & Materials Engineering , University of Alberta , Edmonton , Alberta T6G 2R3 , Canada.
Langmuir. 2018 May 15;34(19):5396-5402. doi: 10.1021/acs.langmuir.8b00256. Epub 2018 May 8.
The control of the surface wettability is of great interest for technological applications as well as for the fundamental understanding of surface phenomena. In this article, we describe the dissolution behavior of droplets wetting a micropatterned surface consisting of smooth concentric circular grooves. In the experiments, a droplet of alcohol (1-pentanol) is placed onto water-immersed micropatterns. When the drops dissolve, the dynamics of the receding contact line occurs in two different modes. In addition to the stick-jump mode with jumps from one ring to the next inner one, our study reveals a second dissolution mode, which we refer to as zipping-depinning. The velocity of the zipping-depinning fronts is governed by the dissolution rate. At the early stage of the droplet dissolution, our experimental results are in good agreement with the theoretical predictions by Debuisson et al. [ Appl. Phys. Lett. 2011 , 99 , 184101 ]. With an extended model, we can accurately describe the dissolution dynamics in both stick-jump and zipping-depinning modes.
表面润湿性的控制对于技术应用以及对表面现象的基本理解都非常重要。在本文中,我们描述了液滴在由平滑同心圆形凹槽组成的微图案表面上的溶解行为。在实验中,将一滴酒精(1-戊醇)放置在水浸入微图案上。当液滴溶解时,后退接触线的动力学以两种不同的模式发生。除了从一个环跳到下一个内环的粘滑跳跃模式外,我们的研究还揭示了第二种溶解模式,我们称之为拉链解缠结。拉链解缠结前沿的速度由溶解速率控制。在液滴溶解的早期阶段,我们的实验结果与 Debuisson 等人的理论预测[Appl. Phys. Lett. 2011, 99, 184101]非常吻合。通过扩展模型,我们可以准确描述粘滑跳跃和拉链解缠结模式下的溶解动力学。