Department of Solid State Sciences , Ghent University , Krijgslaan 281 (S1) , 9000 Ghent , Belgium.
IMEC , Kapeldreef 75 , 3001 Leuven , Belgium.
ACS Appl Mater Interfaces. 2018 May 2;10(17):14835-14842. doi: 10.1021/acsami.7b18228. Epub 2018 Apr 19.
In this paper, we report on the use of CuInX (X = Te, Se, S) as a cation supply layer in filamentary switching applications. Being used as absorber layers in solar cells, we take advantage of the reported Cu ionic conductivity of these materials to investigate the effect of the chalcogen element on filament stability. In situ X-ray diffraction showed material stability attractive for back-end-of-line in semiconductor industry. When integrated in 580 μm diameter memory cells, more volatile switching was found at low compliance current using CuInS and CuInSe compared to CuInTe, which is ascribed to the natural tendency for Cu to diffuse back from the switching layer to the cation supply layer because of the larger difference in electrochemical potential using Se or S. Low-current and scaled behavior was also confirmed using conductive atomic force microscopy. Hence, by varying the chalcogen element, a method is presented to modulate the filament stability.
本文报告了在丝状开关应用中使用 CuInX(X = Te、Se、S)作为阳离子供应层的情况。由于这些材料被用作太阳能电池的吸收层,我们利用其报道的 Cu 离子电导率来研究了族元素对丝稳定性的影响。原位 X 射线衍射显示出了这些材料在后段半导体工业中的应用潜力。在集成 580μm 直径的存储单元时,与 CuInTe 相比,使用 CuInS 和 CuInSe 可以在低合规电流下发现更易挥发的开关,这归因于电化学势差较大,导致 Cu 从开关层向阳离子供应层自然扩散的趋势。使用导电原子力显微镜也证实了低电流和缩放行为。因此,通过改变族元素,可以提出一种调制丝稳定性的方法。