Suppr超能文献

激子离域配体可加快纳米晶体固体中的能量迁移。

Exciton-Delocalizing Ligands Can Speed Up Energy Migration in Nanocrystal Solids.

机构信息

Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.

出版信息

Nano Lett. 2018 May 9;18(5):3259-3270. doi: 10.1021/acs.nanolett.8b01079. Epub 2018 Apr 25.

Abstract

Researchers have long sought to use surface ligands to enhance energy migration in nanocrystal solids by decreasing the physical separation between nanocrystals and strengthening their electronic coupling. Exciton-delocalizing ligands, which possess frontier molecular orbitals that strongly mix with nanocrystal band-edge states, are well-suited for this role because they can facilitate carrier-wave function extension beyond the nanocrystal core, reducing barriers for energy transfer. This report details the use of the exciton-delocalizing ligand phenyldithiocarbamate (PDTC) to tune the transport rate and diffusion length of excitons in CdSe nanocrystal solids. A film composed of oleate-terminated CdSe nanocrystals is subjected to a solid-state ligand exchange to replace oleate with PDTC. Exciton migration in the films is subsequently investigated by femtosecond transient absorption. Our experiments indicate that the treatment of nanocrystal films with PDTC leads to rapid (∼400 fs) downhill energy migration (∼80 meV), while no such migration occurs in oleate-capped films. Kinetic Monte Carlo simulations allow us to extract both rates and length scales for exciton diffusion in PDTC-treated films. These simulations reproduce dynamics observed in transient absorption measurements over a range of temperatures and confirm excitons hop via a Miller-Abrahams mechanism. Importantly, our experiments and simulations show PDTC treatment increases the exciton hopping rate to 200 fs, an improvement of 5 orders of magnitude relative to oleate-capped films. This exciton hopping rate stands as one of the fastest determined for CdSe solids. The facile, room-temperature processing and improved transport properties offered by the solid-state exchange of exciton-delocalizing ligands show they offer promise for the construction of strongly coupled nanocrystal arrays.

摘要

研究人员长期以来一直试图通过减少纳米晶体之间的物理分离并增强它们的电子耦合来利用表面配体来增强纳米晶体固体中的能量迁移。具有强烈混合纳米晶带边缘态的前线分子轨道的激子离域配体非常适合此作用,因为它们可以促进载流子波函数扩展超出纳米晶核,从而降低能量转移的障碍。本报告详细介绍了使用激子离域配体苯并噻二唑(PDTC)来调节 CdSe 纳米晶体固体中激子的传输速率和扩散长度。由油酸盐封端的 CdSe 纳米晶组成的薄膜经历固态配体交换,用 PDTC 取代油酸盐。随后通过飞秒瞬态吸收研究了薄膜中的激子迁移。我们的实验表明,用 PDTC 处理纳米晶膜会导致快速(∼400 fs)下坡能量迁移(∼80 meV),而在油酸盐封端的薄膜中则不会发生这种迁移。动力学蒙特卡罗模拟使我们能够提取 PDTC 处理的薄膜中激子扩散的速率和长度尺度。这些模拟再现了在瞬态吸收测量中观察到的动力学,在不同温度范围内,并证实激子通过 Miller-Abrahams 机制跳跃。重要的是,我们的实验和模拟表明,PDTC 处理将激子跳跃速率提高到 200 fs,相对于油酸盐封端的薄膜提高了 5 个数量级。这个激子跳跃速率是 CdSe 固体中最快的之一。激子离域配体的固态交换提供了简便的室温处理和改善的传输性能,这表明它们在构建强耦合纳米晶阵列方面具有潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验