Suppr超能文献

功能测定筛选和剖析基因组命中:加大对基因组研究的国家投入。

Functional Assays to Screen and Dissect Genomic Hits: Doubling Down on the National Investment in Genomic Research.

机构信息

Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.).

出版信息

Circ Genom Precis Med. 2018 Apr;11(4):e002178. doi: 10.1161/CIRCGEN.118.002178.

Abstract

The National Institutes of Health have made substantial investments in genomic studies and technologies to identify DNA sequence variants associated with human disease phenotypes. The National Heart, Lung, and Blood Institute has been at the forefront of these commitments to ascertain genetic variation associated with heart, lung, blood, and sleep diseases and related clinical traits. Genome-wide association studies, exome- and genome-sequencing studies, and exome-genotyping studies of the National Heart, Lung, and Blood Institute-funded epidemiological and clinical case-control studies are identifying large numbers of genetic variants associated with heart, lung, blood, and sleep phenotypes. However, investigators face challenges in identification of genomic variants that are functionally disruptive among the myriad of computationally implicated variants. Studies to define mechanisms of genetic disruption encoded by computationally identified genomic variants require reproducible, adaptable, and inexpensive methods to screen candidate variant and gene function. High-throughput strategies will permit a tiered variant discovery and genetic mechanism approach that begins with rapid functional screening of a large number of computationally implicated variants and genes for discovery of those that merit mechanistic investigation. As such, improved variant-to-gene and gene-to-function screens-and adequate support for such studies-are critical to accelerating the translation of genomic findings. In this White Paper, we outline the variety of novel technologies, assays, and model systems that are making such screens faster, cheaper, and more accurate, referencing published work and ongoing work supported by the National Heart, Lung, and Blood Institute's R21/R33 Functional Assays to Screen Genomic Hits program. We discuss priorities that can accelerate the impressive but incomplete progress represented by big data genomic research.

摘要

美国国立卫生研究院(NIH)在基因组研究和技术方面投入了大量资金,以鉴定与人类疾病表型相关的 DNA 序列变异。美国国立心肺血液研究所(NHLBI)一直处于这些承诺的前沿,以确定与心脏、肺、血液和睡眠疾病以及相关临床特征相关的遗传变异。全基因组关联研究、外显子组和基因组测序研究以及 NHLBI 资助的流行病学和临床病例对照研究的外显子组基因分型研究正在确定与心脏、肺、血液和睡眠表型相关的大量遗传变异。然而,研究人员在确定具有功能破坏性的基因组变异方面面临挑战,而这些变异在众多计算上涉及的变异中。定义由计算确定的基因组变异所编码的遗传破坏机制的研究需要可重复、可适应和廉价的方法来筛选候选变体和基因功能。高通量策略将允许分层的变体发现和遗传机制方法,该方法从快速功能筛选大量计算上涉及的变体和基因开始,以发现那些值得进行机制研究的变体。因此,改进的变体到基因和基因到功能筛选——以及对这些研究的充分支持——对于加速基因组发现的转化至关重要。在本白皮书中,我们概述了各种新型技术、检测方法和模型系统,这些技术、检测方法和模型系统使这些筛选更快、更便宜、更准确,并参考了已发表的工作和 NHLBI 的 R21/R33 功能检测以筛选基因组命中计划的正在进行的工作。我们讨论了可以加速大数据基因组研究所代表的令人印象深刻但不完整进展的优先事项。

相似文献

1
Functional Assays to Screen and Dissect Genomic Hits: Doubling Down on the National Investment in Genomic Research.
Circ Genom Precis Med. 2018 Apr;11(4):e002178. doi: 10.1161/CIRCGEN.118.002178.
2
Genome analysis and knowledge-driven variant interpretation with TGex.
BMC Med Genomics. 2019 Dec 30;12(1):200. doi: 10.1186/s12920-019-0647-8.
4
Genomic Analysis in the Age of Human Genome Sequencing.
Cell. 2019 Mar 21;177(1):70-84. doi: 10.1016/j.cell.2019.02.032.
6
Rationale and study design of the CardioGene Study: genomics of in-stent restenosis.
Pharmacogenomics. 2004 Oct;5(7):952-1004. doi: 10.1517/14622416.5.7.949.
8
Identification of clinically actionable variants from genome sequencing of families with congenital heart disease.
Genet Med. 2019 May;21(5):1111-1120. doi: 10.1038/s41436-018-0296-x. Epub 2018 Oct 8.
9
When " of 2" is not enough: integrating statistical and functional data in gene discovery.
Cold Spring Harb Mol Case Stud. 2017 May;3(3):a001099. doi: 10.1101/mcs.a001099.
10

引用本文的文献

2
The grand challenge of discovering new cardiovascular drugs.
Front Drug Discov (Lausanne). 2022;2. doi: 10.3389/fddsv.2022.1027401. Epub 2022 Sep 23.
3
RARG variant predictive of doxorubicin-induced cardiotoxicity identifies a cardioprotective therapy.
Cell Stem Cell. 2021 Dec 2;28(12):2076-2089.e7. doi: 10.1016/j.stem.2021.08.006. Epub 2021 Sep 15.
4
PhenomeXcan: Mapping the genome to the phenome through the transcriptome.
Sci Adv. 2020 Sep 10;6(37). doi: 10.1126/sciadv.aba2083. Print 2020 Sep.
5
Barriers to Implementing Clinical Pharmacogenetics Testing in Sub-Saharan Africa. A Critical Review.
Pharmaceutics. 2020 Aug 26;12(9):809. doi: 10.3390/pharmaceutics12090809.
6
Identifying adaptive alleles in the human genome: from selection mapping to functional validation.
Hum Genet. 2021 Feb;140(2):241-276. doi: 10.1007/s00439-020-02206-7. Epub 2020 Jul 29.
7
Functional Genomics of Variants.
Am J Respir Cell Mol Biol. 2020 Oct;63(4):436-443. doi: 10.1165/rcmb.2020-0034MA.
8
Molecular networks in Network Medicine: Development and applications.
Wiley Interdiscip Rev Syst Biol Med. 2020 Nov;12(6):e1489. doi: 10.1002/wsbm.1489. Epub 2020 Apr 19.
9
: Experimental Access to Cardiovascular Development, Regeneration Discovery, and Cardiovascular Heart-Defect Modeling.
Cold Spring Harb Perspect Biol. 2020 Jun 1;12(6):a037200. doi: 10.1101/cshperspect.a037200.
10
Conservation and divergence of protein pathways in the vertebrate heart.
PLoS Biol. 2019 Sep 6;17(9):e3000437. doi: 10.1371/journal.pbio.3000437. eCollection 2019 Sep.

本文引用的文献

1
RAPGEF5 Regulates Nuclear Translocation of β-Catenin.
Dev Cell. 2018 Jan 22;44(2):248-260.e4. doi: 10.1016/j.devcel.2017.12.001. Epub 2017 Dec 28.
3
Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage.
Nature. 2017 Nov 23;551(7681):464-471. doi: 10.1038/nature24644. Epub 2017 Oct 25.
4
Exome-wide association study of plasma lipids in >300,000 individuals.
Nat Genet. 2017 Dec;49(12):1758-1766. doi: 10.1038/ng.3977. Epub 2017 Oct 30.
5
An interspecies heart-to-heart: Using to uncover the genetic basis of congenital heart disease.
Curr Pathobiol Rep. 2017 Jun;5(2):187-196. doi: 10.1007/s40139-017-0142-x. Epub 2017 May 6.
7
Genetic effects on gene expression across human tissues.
Nature. 2017 Oct 11;550(7675):204-213. doi: 10.1038/nature24277.
8
The 4D nucleome project.
Nature. 2017 Sep 13;549(7671):219-226. doi: 10.1038/nature23884.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验