Suppr超能文献

集成网络细胞特征图谱 NIH 计划库:人类细胞对扰动反应的系统水平编目。

The Library of Integrated Network-Based Cellular Signatures NIH Program: System-Level Cataloging of Human Cells Response to Perturbations.

机构信息

BD2K-LINCS DCIC, Mount Sinai Center for Bioinformatics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

BD2K-LINCS DCIC, Mount Sinai Center for Bioinformatics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

出版信息

Cell Syst. 2018 Jan 24;6(1):13-24. doi: 10.1016/j.cels.2017.11.001. Epub 2017 Nov 29.

Abstract

The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability.

摘要

整合网络细胞特征图谱库(LINCS)是 NIH 共同基金计划,它对人类细胞如何对化学、遗传和疾病干扰做出全球响应进行编目。LINCS 生成的资源包括实验和计算方法、可视化工具、分子和成像数据以及特征图谱。通过整合人类细胞对多种干扰的响应范围的综合信息,LINCS 计划旨在更好地了解人类疾病并推进新疗法的开发。正在研究的干扰包括药物、遗传干扰、组织微环境、抗体和致病突变。通过转录谱分析、质谱分析、细胞成像和生化方法等检测手段来测量对干扰的响应。LINCS 计划专注于组织和细胞类型之间共享的细胞生理学,这些组织和细胞类型与多种疾病相关,包括癌症、心脏病和神经退行性疾病。本文介绍了 LINCS 技术、数据集、工具以及数据可访问性和可重用性的方法。

相似文献

3
Getting Started with LINCS Datasets and Tools.LINC 数据集和工具入门。
Curr Protoc. 2022 Jul;2(7):e487. doi: 10.1002/cpz1.487.
7
Compound signature detection on LINCS L1000 big data.基于LINCS L1000大数据的复合特征检测
Mol Biosyst. 2015 Mar;11(3):714-22. doi: 10.1039/c4mb00677a. Epub 2015 Jan 22.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验