State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China.
Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
Biochim Biophys Acta Mol Basis Dis. 2018 Jul;1864(7):2481-2494. doi: 10.1016/j.bbadis.2018.04.005. Epub 2018 Apr 11.
Diabetes-induced endothelial cell (EC) dysfunction and neovascularization impairment constitute vascular complications with limited treatment regimens. Transcription factor FOXO1 is a key angiogenic regulator and plays a pathologic role in progression of diabetes. The present study was designed to determine the involvement of FOXO1 in impaired EC function and post-ischemic neovascularization in diabetes and investigate underlying mechanisms. We found that FOXO1-selective inhibitor AS1842856 improved blood flow recovery and capillary density in ischemic hindlimb, and rescued the delay of wound closure with a concomitant augmentation of mean perfusion rate in diabetic mice. In vitro, treatment with AS1842856 or FOXO1 siRNA abrogated high glucose-induced apoptosis and ameliorated capillary tube formation in human umbilical vein endothelial cells (HUVECs). FOXO1 inhibition relieved alterations in mitochondrial networks and significantly suppressed the overproduction of mitochondrial reactive oxygen species (mtROS) induced by high glucose in ECs. Expression of dynamin-related protein-1 (Drp1) and phosphorylation at Ser616, a protein required for mitochondrial fission, were enhanced by hyperglycemia, which could be neutralized by FOXO1 inhibition. Moreover, the transcription of Rho-associated coiled-coil containing protein kinase 1 (ROCK1), which phosphorylates Drp1 at Ser616, was shown by luciferase assay to be directly regulated by FOXO1. These findings suggested that FOXO1 is critical to preserve mitochondrial quantity and function in ECs, and FOXO1 may serve as a therapeutic target for microvascular complications of diabetes.
糖尿病引起的内皮细胞 (EC) 功能障碍和新生血管形成损伤构成了血管并发症,治疗方案有限。转录因子 FOXO1 是关键的血管生成调节剂,在糖尿病的进展中发挥病理性作用。本研究旨在确定 FOXO1 在糖尿病中 EC 功能障碍和缺血后新生血管形成中的作用,并探讨其潜在机制。我们发现,FOXO1 选择性抑制剂 AS1842856 改善了糖尿病小鼠缺血后肢血流量恢复和毛细血管密度,并通过同时增加平均灌注率来挽救伤口闭合延迟。在体外,用 AS1842856 或 FOXO1 siRNA 处理可消除高糖诱导的人脐静脉内皮细胞 (HUVEC) 凋亡,并改善毛细血管管腔形成。FOXO1 抑制减轻了线粒体网络的改变,并显著抑制了高糖诱导的 EC 中线粒体活性氧物质 (mtROS) 的过度产生。动力相关蛋白 1 (Drp1) 的表达和 Ser616 位点的磷酸化(线粒体分裂所需的蛋白)在高糖下增强,而 FOXO1 抑制可以中和这种增强。此外,荧光素酶实验表明,Rho 相关卷曲螺旋蛋白激酶 1 (ROCK1) 的转录可被 FOXO1 直接调控,该激酶可使 Drp1 在 Ser616 位点磷酸化。这些发现表明,FOXO1 对于维持 EC 中线粒体的数量和功能至关重要,FOXO1 可能成为糖尿病微血管并发症的治疗靶点。